精英家教网 > 高中数学 > 题目详情

【题目】为了解心肺疾病是否与年龄相关,现随机抽取80名市民,得到数据如下表:

患心肺疾病

不患心肺疾病

合计

大于40岁

16

小于或等于40岁

12

合计

80

已知在全部的80人中随机抽取1人,抽到不患心肺疾病的概率为
下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关?

【答案】
(1)解:

患心肺疾病

不患心肺疾病

合计

大于40岁

16

20

36

小于或等于40岁

32

12

44

合计

48

32

80


(2)解:

能在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关


【解析】(1)根据所给的数据,画出列联表;(2)根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[m,n]D,使f(x)在[m,n]上的值域为 ,那么就称y=f(x)为“好函数”.现有f(x)=loga(ax+k),(a>0,a≠1)是“好函数”,则k的取值范围是(
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:
12=1
12﹣22=﹣3
12﹣22+32=6
12﹣22+32﹣42=﹣10

照此规律,第n个等式可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系内,点 在曲线,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.

()写出曲线的标准方程和直线的直角坐标方程;

()若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)═log2 +a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】截直线所得弦长为2,则实数__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象关于y轴对称,并且是[0,+∞)上的减函数,若f(lgx)>f(1),则实数x的取值范围是(
A.
B.
C.
D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

非体育迷

体育迷

合计

10

55

合计


(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4 ,则函数f(x)图象的一条对称轴的方程为(

A.x=
B.x=
C.x=4
D.x=2

查看答案和解析>>

同步练习册答案