【题目】如下图,已知椭圆的上顶点为,左、右顶点为,右焦点为, ,且的周长为14.
(I)求椭圆的离心率;
(II)过点的直线与椭圆相交于不同两点,点N在线段上.设,试判断点是否在一条定直线上,并求实数λ的取值范围.
【答案】(Ⅰ);(Ⅱ) .
【解析】试题分析:(Ⅰ)根据条件计算得的值,进而可求离心率;
(Ⅱ)设l的方程为,与椭圆联立得, ,根据条件,化简得,带入条件可得,由即可求得的范围.
试题解析:
(I)由,得,
的周长为,即,得,
所以,椭圆的离心率为;
(II)显然直线l的斜率存在,设l的方程为,
设P(x1,y1),Q(x2,y2),N(x0,y0),
由,得,化简得①,-----6分
由消去x,得,
得, ,
代入①式得,由得,
,
因为,得,所以,
因此,N在一条直线上,实数.
【法二:显然直线l的斜率存在,设l的方程为,不妨设,
设P(x1,y1),Q(x2,y2),N(x0,y0), ,
由,得,化简得①,6分
由, ,得②,
由消去x,得,
可知 ,
得, , ,
代入①式得,由得,
由②式得 ,得,
因此,N在一条直线上,实数.
法三:设P(x1,y1),Q(x2,y2),N(x0,y0), ,由,
得
所以,将, 代入椭圆方程得
上面两式相减化简得
,
因为,得,所以,
因此,N在一条直线上,实数.
科目:高中数学 来源: 题型:
【题目】(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A. l与l1,l2都不相交
B. l与l1,l2都相交
C. l至多与l1,l2中的一条相交
D. l至少与l1,l2中的一条相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-4=0.
(1)若直线l1,l2,l3交于一点,求实数m的值;
(2)若直线l1,l2,l3不能围成三角形,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l过点P (3, )且倾斜角为.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(Ⅰ)求直线l的一个参数方程和圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,求的值.
(2)已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)若正实数满足,且对任意的正实数恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,为正三角形,,,点,分别为线段、的中点,、分别为线段、上一点,且,.
(1)确定点的位置,使得平面;
(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com