分析 (Ⅰ)an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an,变形为:an+2-an+1=$\frac{2}{3}({a}_{n+1}-{a}_{n})$,利用等比数列的通项公式即可得出.
(Ⅱ)由(Ⅰ)可知,bn}=3($\frac{2}{3}$)n-1,可得an+1-an=3×$(\frac{2}{3})^{n-1}$,利用an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)与等比数列的前n项和公式即可得出.
解答 (Ⅰ)证明:∵an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an,
变形为:an+2-an+1=$\frac{2}{3}({a}_{n+1}-{a}_{n})$,
即bn+1=$\frac{2}{3}$bn
又b1=a2-a1=3
∴数列{bn}是首项为3,公比为$\frac{2}{3}$的等比数列.
(Ⅱ)解:由(Ⅰ)可知,bn}=3($\frac{2}{3}$)n-1,
∴an+1-an=3×$(\frac{2}{3})^{n-1}$,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+3+3×$(\frac{2}{3})$+3×$(\frac{2}{3})^{2}$+…+3×$(\frac{2}{3})^{n-2}$
=$1+3×\frac{1-(\frac{2}{3})^{n-1}}{1-\frac{2}{3}}$
=10-9×$(\frac{2}{3})^{n-1}$.
点评 本题考查了递推关系、等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{2}{9}$ | C. | -$\frac{2}{9}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{17}{16}$-$\sqrt{5}$ | C. | -$\frac{15}{16}$-$\sqrt{5}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x+1)=2f(x) | B. | f(2x)=[f(x)]2 | C. | f(x+y)=f(x)•f(y) | D. | f(xy)=f(x)•f(y) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com