精英家教网 > 高中数学 > 题目详情
定义由如图框图表示的运算,若f(x)=|x+1|+|x-1|,则输出y=(  )
A、0B、1C、2D、4
考点:程序框图
专题:算法和程序框图
分析:由已知中的程序框图可知:该程序的功能是判断函数的奇偶性,如果是偶函数,则输出f(0),如果是奇函数,则输出f(2).
解答: 解:由已知中的程序框图可知:该程序的功能是判断函数的奇偶性,
如果是偶函数,则输出f(0),如果是奇函数,则输出f(2).
∵f(-x)=|-x+1|+|-x-1|=|x+1|+|x-1|=f(x),
故f(x)为偶函数,
故输出结果为f(0)=|0+1|+|0-1|=2,
故选:C
点评:本题考查的知识点是程序框图,由已知中的程序框图分析出程序的功能是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1、z2在复平面上对应的点分别为A(1,2)、B(-1,3),则
z2
z1
的虚部为(  )
A、1B、iC、-1D、-i

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线2y2-x2=4的虚轴长是(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a2=4,a5=13,则a6=(  )
A、14B、15C、16D、17

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=(a2-2)+(a+
2
)i为纯虚数(a∈R),则复数
a-i
a+i
位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1+ex)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则-
a1
e
+
a2
e2
-…+
a2014
e2014
(  )
A、eB、1C、-1D、-e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+2cos2x
(1)求f(
3
)的值;
(2)已知x∈[0,
π
2
],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+2)=f(x),当-1<x≤0时f(x)=e-x;当0<x≤1时,f(x)=4x2-4x+1.
(Ⅰ)求函数f(x)在(-1,1)上的单调区间;
(Ⅱ)若g(x)=f(x)-kx(k>0),求函数g(x)在[0,3]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.

查看答案和解析>>

同步练习册答案