精英家教网 > 高中数学 > 题目详情
(2010•宝山区模拟)若使函数y=x2-ax+1在区间[1,2]上存在反函数,则实数a的取值范围
(-∞,2]∪[4,+∞)
(-∞,2]∪[4,+∞)
分析:由y=x2-ax+1=(x-
a
2
2-
a2
4
+1在[1,2]上有反函数,知
a
2
1,或
a
2
≥2
,由此能求出a的取值范围.
解答:解:y=x2-ax+1=(x-
a
2
2-
a2
4
+1,
∵此函数在[1,2]上有反函数,
a
2
1,或
a
2
≥2

解得a≤2或a≥4.
即a的取值范围为(-∞,2]∪[4,+∞).
故答案为:(-∞,2]∪[4,+∞).
点评:本题考查反函数的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宝山区模拟)函数f(x)=-x2+3x-1,x∈[3,5]的最小值为
-11
-11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设m.n∈R,给出下列命题:
(1)m<n<0⇒m2<n2(2)ma2<na2⇒m<n(3)
m
n
<a,⇒ma<na
,(4)m<n<0,⇒
n
m
<1

其中正确的命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,设椭圆C上的点A(1,
3
2
)到F1、F2两点距离之和等于4.
(1)写出椭圆C的方程;
(2)设点K是椭圆上的动点,求 线段F1K的中点的轨迹方程;
(3)求定点P(m,0)(m>0)到椭圆C上点的距离的最小值d(m),并求当最小值为1时m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)如果直线x+y+a=0与圆x2+(y+
2
)2=1
有公共点,则实数a的取值范围是
[0,2
2
]
[0,2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)已知数列{an}满足a1=1,a2=-2,an+2=-
1an
(n∈N*)
,则该数列前26项的和为
-10
-10

查看答案和解析>>

同步练习册答案