精英家教网 > 高中数学 > 题目详情
已知函数f(x+1)=3x+2,则f(x)的解析式为_________  

试题分析:设x+1=t,则x=t-1,所以,即
点评:若已知复合函数f[g(x)]的解析式,求原函数f(x)的解析式,常用换元法。令g(x)=" t" ,求f(t)的解析式,再把t换为x即可。 但要注意换元后,应注意新变量的取值范围,即为函数的定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)      判断函数的奇偶性,并证明;
(2) 判断的单调性,并说明理由。(不需要严格的定义证明,只要说出理由即可)
(3) 若,方程是否有根?如果有根,请求出一个长度为1的区间,使;如果没有,请说明理由。(注:区间的长度=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,当时,的值分别为(   )
A.1 , 0B.0 , 0C. 1 , 1D.0 , 1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某商品在近30天内每天的销售价格P(元)与时间t(天)的函数关系式为:
P=;该商品的日销售量Q(件)与时间(天)的函数关系式为:
Q=-t+40(0<t≤30,t∈N*).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若奇函数在定义域上递减,且,则的取值范围是_____ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,且.若当时不等式成立,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则的值为(  )
A.B.C.0D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)广东某民营企业主要从事美国的某品牌运动鞋的加工生产,按国际惯例以美元为结算货币,依据以往加工生产的数据统计分析,若加工产品订单的金额为万美元,可获得加工费近似为万美元,受美联储货币政策的影响,美元贬值,由于生产加工签约和成品交付要经历一段时间,收益将因美元贬值而损失万美元,其中为该时段美元的贬值指数,,从而实际所得的加工费为(万美元).
(Ⅰ)若某时期美元贬值指数,为确保企业实际所得加工费随的增加而增加,该企业加工产品订单的金额应在什么范围内?
(Ⅱ)若该企业加工产品订单的金额为万美元时共需要的生产成本为万美元,已知该企业加工生产能力为(其中为产品订单的金额),试问美元的贬值指数在何范围时,该企业加工生产将不会出现亏损.

查看答案和解析>>

同步练习册答案