精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:2x2+3y2=6的左焦点为F,过F的直线l与C交于A、B两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)当直线l与x轴垂直时,求线段AB的长;
(Ⅲ)设线段AB的中点为P,O为坐标原点,直线OP交椭圆C交于M、N两点,是否存在直线l使得|NP|=3|PM|?若存在,求出直线l的方程;若不存在,说明理由.

分析 (Ⅰ)将椭圆方程化为标准方程,求得a,b,c,进而得到离心率;
(Ⅱ)当直线l与x轴垂直时,即为x=-1,代入椭圆方程,求得纵坐标,进而得到弦长;
(Ⅲ)设直线AB:x=my-1,代入椭圆方程,可得(3+2m2)y2-4my-4=0,运用韦达定理,以及中点坐标公式可得P的坐标,再由向量共线的坐标表示,解方程可得m,进而判断存在这样是直线l.

解答 解:(Ⅰ)椭圆C:2x2+3y2=6,即为
$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1,可得a=$\sqrt{3}$,b=$\sqrt{2}$,c=1,
即有e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$;
(Ⅱ)当直线l与x轴垂直时,即为x=-1,
代入椭圆方程可得y2=$\frac{4}{3}$,解得y=±$\frac{2\sqrt{3}}{3}$,
则线段AB的长为$\frac{4\sqrt{3}}{3}$;
(Ⅲ)由F(-1,0),设直线AB:x=my-1,代入椭圆方程,
可得(3+2m2)y2-4my-4=0,
设A(x1,y1),B(x2,y2),
可得y1+y2=$\frac{4m}{3+2{m}^{2}}$,
即有中点P的坐标为($\frac{-3}{3+2{m}^{2}}$,$\frac{2m}{3+2{m}^{2}}$),
直线OP:y=-$\frac{2m}{3}$x,代入椭圆方程,可得
x=±$\frac{3}{\sqrt{3+2{m}^{2}}}$,
可设xN=$\frac{3}{\sqrt{3+2{m}^{2}}}$,xM=-$\frac{3}{\sqrt{3+2{m}^{2}}}$,
假设存在直线l使得|NP|=3|PM|,
即有$\overrightarrow{NP}$=3$\overrightarrow{PM}$,
即为$\frac{-3}{3+2{m}^{2}}$-$\frac{3}{\sqrt{3+2{m}^{2}}}$=3(-$\frac{3}{\sqrt{3+2{m}^{2}}}$-$\frac{-3}{3+2{m}^{2}}$),
解得m=±$\frac{\sqrt{2}}{2}$,
则存在直线l:x=±$\frac{\sqrt{2}}{2}$y-1,使得|NP|=3|PM|.

点评 本题考查椭圆的方程和性质的运用,考查直线方程和椭圆方程联立,运用韦达定理,同时考查向量共线的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,则m=(  )
A.12B.18C.$\frac{27}{4}$D.12或$\frac{27}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在如图所示的长方体ABCD-A1B1C1D1中,|DA|=8,|DC|=6,|DD1|=3,则D1B1的中点M的坐标为(4,3,3),|DM|=$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某棱锥的三视图如图所示,则该几何体的体积为(  )
A.1B.2C.$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程(x-$\sqrt{{-y}^{2}+2y+8}$)$\sqrt{x-y}$=0表示的曲线为圆心为(0,1),半径为3的右半圆和线段y=x(-2≤y≤4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.四棱柱ABCD-A1B1C1D1各棱长均为1,∠A1AB=∠A1AD=∠BAD=60°,则点B与点D1两点间的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以下几个命题中:其中真命题的序号为③④(写出所有真命题的序号)
①设A,B为两点定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$则动点P的轨迹为椭圆;
③双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$与椭圆$\frac{{x}^{2}}{35}+{y}^{2}$=1有相同的焦点;
④若方程2x2-5x+a=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3;
⑤在平面内,到定点(2,1)的距离与到定直线3x+4y-10=0的距离相等的点的轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均为等腰三角形,AD=4AB=4,M为线段CP上一点,且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求证:MB∥平面PAD;并求M到平面ABCD的距离;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标平面上,已知长轴为6的椭圆C与抛物线D有共同的焦点F1(-2,0).
(1)求椭圆C与抛物线D的标准方程;
(2)已知椭圆C与抛物线D相交于A、B两点,求△ABF1的面积S${\;}_{△AB{F}_{1}}$.

查看答案和解析>>

同步练习册答案