精英家教网 > 高中数学 > 题目详情
20.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,则m=(  )
A.12B.18C.$\frac{27}{4}$D.12或$\frac{27}{4}$

分析 利用椭圆的性质求解.

解答 解:∵焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,
∴e=$\frac{\sqrt{m-9}}{\sqrt{m}}$=$\frac{1}{2}$,
解得m=12.
故选:A.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在原点,右准线的方程为:x=4,左焦点是F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|$\overrightarrow{MQ}$|=2|$\overrightarrow{QF}$|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在区间(0,+∞)上的函数f(x)满足f($\frac{{x}_{1}}{{x}_{2}}$)=f(x1)-f(x2).
(1)求f(1)的值;
(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;
(3)在(2)的条件下,若f(5)=-1,求f(x)在[3,25]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x+tanx+1,若f(a)=2,则f(-a)的值为(  )
A.0B.-1C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)={log_a}(\sqrt{{x^2}+1}+x)$.
(1)判断并证明f(x)的奇偶性;
(2)若两个函数F(x)与G(x)在闭区间[p,q]上恒满足|F(x)-G(x)|>2,则称函数F(x)与G(x)在闭区间[p,q]上是分离的.是否存在实数a使得y=f(x)的反函数y=f-1(x)与g(x)=ax在闭区间[1,2]上分离?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上的两个动点,O是坐标原点,且AO⊥BO,作OP⊥AB,垂足为P,则|OP|=(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a$,$\vec b$的夹角为120°,且$|\vec a|=2$,$|\vec b|=1$,$|{\vec a+2\vec b}|$=(  )
A.$\sqrt{2}$B.$\sqrt{7}$C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.我们把由半椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x>0)与半椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是腰长为1的等腰直角三角形,则a,b的值分别为(  )
A.5,4B.$\frac{{\sqrt{7}}}{2},1$C.$1,\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{2},1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:2x2+3y2=6的左焦点为F,过F的直线l与C交于A、B两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)当直线l与x轴垂直时,求线段AB的长;
(Ⅲ)设线段AB的中点为P,O为坐标原点,直线OP交椭圆C交于M、N两点,是否存在直线l使得|NP|=3|PM|?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案