精英家教网 > 高中数学 > 题目详情
15.下列函数中周期为π的是(  )
A.y=|sinx|B.y=|cos2x|C.y=tan2xD.y=sin2x,x∈(0,2π)

分析 分别求出函数的周期判断A、B、C,由周期函数的定义可知y=sin2x,x∈(0,2π)不是周期函数.

解答 解:A,∵y=sinx的周期为2π,∴y=|sinx|的周期为T=π;
B,∵y=cos2x的周期为T=$\frac{2π}{2}=π$,∴y=|cos2x|的周期为$\frac{π}{2}$;
C,y=tan2x的周期为T=$\frac{π}{2}$;
D,y=sin2x,x∈(0,2π)不是周期函数.
∴周期为π的是y=|sinx|,
故选:A.

点评 本题考查三角函数的周期及其求法,关键是熟记正弦函数、余弦函数及正切函数的周期公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知三棱锥A-BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,则三棱锥A-BCD的外接球体积为4$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点是抛物线y2=4x的焦点,以原点O为圆心,椭圆的长半轴长为半径的圆与直线x+y-2$\sqrt{2}$=0相切.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于P,Q两点,且△POQ的面积为定值$\sqrt{3}$,试判断直线OP与OQ的斜率之积是否为定值?若为定值,求出定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.平行四边形ABCD中,对角线AC=$\sqrt{65},BD=\sqrt{17}$,周长为18,则这个平行四边形的面积是(  )
A.8B.18C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)根据频率直方分布图计算该班50位学生期中考试数学成绩的平均数;
(3)从成绩低于60分的学生中随机选取2人,求该2人中恰好只有1人成绩在[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求虚数z,使之同时满足以下两个条件:
(1)|$\overline{z}$-3|=|$\overline{z}$-3i|;
(2)z-1+$\frac{5}{z-1}$是实数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈[{\frac{π}{6},\frac{2π}{3}})$.
(1)求$\overrightarrow a$•$\overrightarrow b$及|$\overrightarrow a$-$\overrightarrow b$|;
(2)若f(x)=$\overrightarrow a$•$\overrightarrow b$-|$\overrightarrow a$-$\overrightarrow b$|,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=$\frac{3}{5}$,且α为第一象限角,则cos($\frac{π}{3}$+α)=(  )
A.$\frac{{-4-3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{4+3\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.A={x|x2-5x+6=0},B={x|mx=1},若B⊆A,则实数m={0,$\frac{1}{2}$,$\frac{1}{3}$}.

查看答案和解析>>

同步练习册答案