精英家教网 > 高中数学 > 题目详情
10.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)根据频率直方分布图计算该班50位学生期中考试数学成绩的平均数;
(3)从成绩低于60分的学生中随机选取2人,求该2人中恰好只有1人成绩在[50,60)的概率.

分析 (1)由频率之和为1,即可求出x的值.
(2)根据平均分的定义即求出,
(3)求出[50,60)上3人,[40,50)上3人,根据条件概率公式计算即可.

解答 解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018,
(2)平均分的估计值为0.06×45+0.06×55+0.1×65+0.54×75+0.18×85+0.06×95=74,
(3)0.06×50×2=6,即[50,60)3人,[40,50)3人,
故p=$\frac{{{C}_{3}^{1}C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{3}{5}$.

点评 本题考查了频率分布直方图的应用问题,也考查了平均数中位数的计算问题,考查条件概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知中心在坐标原点O,焦点在y轴上的椭圆C的右顶点和上顶点分别为A、B,若△AOB的面积为$\frac{\sqrt{2}}{2}$.且直线AB经过点P(-2,3$\sqrt{2}$)
(1)求椭圆C的方程;
(2)过点S(-$\frac{1}{3}$,0)的动直线l交椭圆C于M,N两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以MN为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a52=(  )
$({\begin{array}{l}{{a_{41}}}&{{a_{42}}}&{{a_{43}}}\\{{a_{51}}}&{{a_{52}}}&{{a_{53}}}\\{{a_{61}}}&{{a_{62}}}&{{a_{63}}}\end{array}})$.
A.2B.8C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(2x+φ),其中$\frac{π}{2}$<|φ|<π,若$f(x)≤|f(\frac{π}{6})|$对x∈R恒成立,则f(x)的递增区间是(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$B.$[kπ,kπ+\frac{π}{2}](k∈Z)$C.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$D.$[kπ-\frac{π}{2},kπ](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面内三个向量:$\overrightarrow{a}$=(3,2). $\overrightarrow{b}$=(-1,2). $\overrightarrow{c}$=(4,1)
 (1)求($\overrightarrow{a}$+λ $\overrightarrow{c}$)和(2$\overrightarrow{b}$-$\overrightarrow{a}$)的坐标
(2)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)∥(2 $\overrightarrow{b}$-$\overrightarrow{a}$),求实数λ;
(3)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)⊥(2 $\overrightarrow{b}$-$\overrightarrow{a}$),求实数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中周期为π的是(  )
A.y=|sinx|B.y=|cos2x|C.y=tan2xD.y=sin2x,x∈(0,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.${[{\frac{1+i}{1-i}}]^6}$+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$=(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知随机变量X服从正态分布N(3,4),且P(3≤X≤a)=0.35(其中a>3),则P(X>a)=(  )
A.0.35B.0.25C.0.15D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(0,$\frac{π}{2}$)上任取一个数x,使得1<tanx<2$\sqrt{3}$${∫}_{0}^{1}$xdx的概率是$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案