精英家教网 > 高中数学 > 题目详情
19.已知随机变量X服从正态分布N(3,4),且P(3≤X≤a)=0.35(其中a>3),则P(X>a)=(  )
A.0.35B.0.25C.0.15D.0.3

分析 根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(X>a).

解答 解:∵随机变量X服从正态分布N(3,4),
∴正态曲线的对称轴是x=3,
∵P(3≤X≤a)=0.35(其中a>3),
∴P(X>a)=0.5-0.35=0.15.
故选:C.

点评 本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)=x-ex在区间[0,1]上的最小值为1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)根据频率直方分布图计算该班50位学生期中考试数学成绩的平均数;
(3)从成绩低于60分的学生中随机选取2人,求该2人中恰好只有1人成绩在[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈[{\frac{π}{6},\frac{2π}{3}})$.
(1)求$\overrightarrow a$•$\overrightarrow b$及|$\overrightarrow a$-$\overrightarrow b$|;
(2)若f(x)=$\overrightarrow a$•$\overrightarrow b$-|$\overrightarrow a$-$\overrightarrow b$|,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知AB是圆O的直径,BC与圆O相切与B,D为圆O上的一点,连接DC,DA,CO,DO,∠DAO+∠AOC=180°.
(1)证明:△OBC≌△ODC;
(2)证明:AD•OC=AB•OD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=$\frac{3}{5}$,且α为第一象限角,则cos($\frac{π}{3}$+α)=(  )
A.$\frac{{-4-3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{4+3\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=$\frac{π}{3}$,则椭圆C1的离心率的取值范围是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,0),若向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{c}$=(1,-2)垂直,则实数λ等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$为奇函数,则实数a的值为1或-1.

查看答案和解析>>

同步练习册答案