精英家教网 > 高中数学 > 题目详情
20.已知中心在坐标原点O,焦点在y轴上的椭圆C的右顶点和上顶点分别为A、B,若△AOB的面积为$\frac{\sqrt{2}}{2}$.且直线AB经过点P(-2,3$\sqrt{2}$)
(1)求椭圆C的方程;
(2)过点S(-$\frac{1}{3}$,0)的动直线l交椭圆C于M,N两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以MN为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

分析 (1)利用待定系数法,列方程组解出a,b;
(2)先求出l平行x轴和垂直x轴的特殊情况,找到两圆的公共点,再证明此公共点在动圆上即可.

解答 解:(1)设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$,(a>b>0).
∴椭圆的上顶点为B(0,a),右顶点为A(b,0),直线AB的方程为$\frac{x}{b}+\frac{y}{a}$=1.
∴$\left\{\begin{array}{l}{\frac{1}{2}ab=\frac{\sqrt{2}}{2}}\\{\frac{-2}{b}+\frac{3\sqrt{2}}{a}=1}\end{array}\right.$,解得a=$\sqrt{2}$,b=1.
椭圆C的方程是$\frac{{y}^{2}}{2}+{x}^{2}$=1.
(2)若直线与x轴重合,则MN=2b=2,圆的方程为x2+y2=1,
若直线垂直于x轴,则MN=$\frac{8}{3}$,圆的方程为(x+$\frac{1}{3}$)2+y2=$\frac{16}{9}$.
显然A(1,0)为两圆的公共点,
因此所求的点T如果存在,只能是A(1,0).
事实上,点(1,0)就是所求的点.证明如下:
当直线斜率存在时,设直线方程为y=k(x+$\frac{1}{3}$).
由联立方程组$\left\{\begin{array}{l}{\frac{{y}^{2}}{2}+{x}^{2}=1}\\{y=k(x+\frac{1}{3})}\end{array}\right.$,得(k2+2)x2+$\frac{2{k}^{2}}{3}$x+$\frac{{k}^{2}}{9}$-2=0,
设M(x1,y1),N(x2,y2),则x1+x2=-$\frac{2{k}^{2}}{3({k}^{2}+2)}$,x1x2=$\frac{\frac{{k}^{2}}{9}-2}{{k}^{2}+2}$.
又y1y2=k2(x1+$\frac{1}{3}$)(x2+$\frac{1}{3}$)=k2x1x2+$\frac{{k}^{2}}{3}$(x1+x2)+$\frac{{k}^{2}}{9}$.
∵$\overrightarrow{AM}$=(x1-1,y1),$\overrightarrow{AN}$=(x2-1,y2),
∴$\overrightarrow{AM}•\overrightarrow{AN}$=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+k2x1x2+$\frac{{k}^{2}}{3}$(x1+x2)+$\frac{{k}^{2}}{9}$
=(1+k2)x1x2+($\frac{{k}^{2}}{3}-1$)(x1+x2)+1+$\frac{{k}^{2}}{9}$
═(1+k2)•$\frac{{k}^{2}-18}{9({k}^{2}+2)}$-$\frac{{k}^{2}-3}{3}$•$\frac{2{k}^{2}}{3({k}^{2}+2)}$+$\frac{{k}^{2}+9}{9}$
=0,
∴AM⊥AN,即以MN为直径的圆经过点A(1,0).
所以在坐标平面上存在一个定点T(1,0),使得无论l如何转动,以MN为直径的圆恒过点T.

点评 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-x2-x+4 (x∈R)的递减区间是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x)、f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x)、f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二组:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)设f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围;
(3)设f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2,且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求椭圆C的方程,
(2)设A(-4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别交直线x=$\frac{16}{3}$于M,N两点,若直线MR、NR的斜率分别为k1,k2,试问:k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下命题正确的个数为(  )
①若“p且q”与“?p或q”均为假命题,则p真q假;
②“a>0”是“函数f(x)=|(ax-1)x|在区间(-∞,0)上单调递减”的充要条件;
③函数f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,则a的取值范围是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则m<10.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知三棱锥A-BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,则三棱锥A-BCD的外接球体积为4$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a+\overrightarrow b$B.$\overrightarrow a-\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=x-ex在区间[0,1]上的最小值为1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)根据频率直方分布图计算该班50位学生期中考试数学成绩的平均数;
(3)从成绩低于60分的学生中随机选取2人,求该2人中恰好只有1人成绩在[50,60)的概率.

查看答案和解析>>

同步练习册答案