精英家教网 > 高中数学 > 题目详情
15.以下命题正确的个数为(  )
①若“p且q”与“?p或q”均为假命题,则p真q假;
②“a>0”是“函数f(x)=|(ax-1)x|在区间(-∞,0)上单调递减”的充要条件;
③函数f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,则a的取值范围是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则m<10.
A.1B.2C.3D.4

分析 ①根据“p且q”与“?p或q”均为假命题,结合复合命题的真值表,易判断命题p与q的真假,根据原命题与其否定之间的关系,即得答案;
②根据二次函数的单调性,利用充分条件和必要条件的定义进行判断即可;
③由零点存在性定理,通过f(-1)•f(1)<0,即可得出结论;
④由题意可得$\overrightarrow{a}$•$\overrightarrow{b}$<0且$\overrightarrow{a}$与$\overrightarrow{b}$不共线,解不等式排除共线的情形即可.

解答 解:对于①,若“p且q”为假命题,则p与q存在假命题,
又“?p或q”为假命题,则?p与q均为假命题,故p真q假,命题①正确;
对于②,如图所示,当a>0时,f(x)=|ax2-x|=|a(x2-x)|=|a(x-$\frac{1}{2a}$)2-$\frac{1}{4a}$|,
则函数f(x)的对称轴为x=$\frac{1}{2a}$>0,
又f(x)=|ax2-x|=|ax(x-$\frac{1}{a}$)|=0得两个根分别为x=0或x=$\frac{1}{a}$>0,
∴函数f(x)=|ax2-x|在区间(-∞,0)内单调递减,充分性成立;
当a=0时,函数f(x)=|ax2-x|=|x|,满足在区间(-∞,0)上单调递减”,必要性不成立;
∴“a>0”是“函数f(x)=|(ax-1)x|在区间(-∞,0)内单调递减”的充分不必要条件,命题②错误;
对于③,函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,
由零点存在性定理,可知f(-1)•f(1)<0,即(-3a+1-2a)•(3a+1-2a)<0;
解得a<-1或a>$\frac{1}{5}$,命题③正确;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,
∴$\overrightarrow{a}$•$\overrightarrow{b}$<0且$\overrightarrow{a}$与$\overrightarrow{b}$不共线,由$\overrightarrow{a}$•$\overrightarrow{b}$<0可得-2+2m-18<0,
解得m<10,
当$\overrightarrow{a}$与$\overrightarrow{b}$共线时,$\frac{-1}{2}$=$\frac{2}{m}$=$\frac{3}{-6}$,可得m=-4,
∴实数m的取值范围为:m<10且m≠-4,命题④错误.
综上,正确的命题序号是①③.
故选:B.

点评 本题考查了复合命题与二次函数的图象与性质的应用问题,也考查了函数零点的定义以及空间向量的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.集合M={x|lg(1-x)<0},集合N={x|-1≤x≤1},则M∩N=(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,若4是2a与2b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.1B.8C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且a1=1,an=$\frac{2S_n^2}{{2{S_n}-1}}({n≥2})$.
(Ⅰ)求证:$\left\{{\frac{1}{S_n}}\right\}$是等差数列,并求Sn的表达式;
(Ⅱ)若存在正数k,使得对任意n∈N*,都有(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知中心在坐标原点O,焦点在y轴上的椭圆C的右顶点和上顶点分别为A、B,若△AOB的面积为$\frac{\sqrt{2}}{2}$.且直线AB经过点P(-2,3$\sqrt{2}$)
(1)求椭圆C的方程;
(2)过点S(-$\frac{1}{3}$,0)的动直线l交椭圆C于M,N两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以MN为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+a|+|x-2|(a∈R).
(1)若f(x)的最小值为1,求实数a的值;
(2)若a=-3,求不等式f(x)≥3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,A,B,C,D为平面四边形ABCD的四个内角.
(1)证明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$;
(2)已知AB=6,BC=3,CD=4,AD=5,
①若A+C=180°,求tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$的值;
②求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面内三个向量:$\overrightarrow{a}$=(3,2). $\overrightarrow{b}$=(-1,2). $\overrightarrow{c}$=(4,1)
 (1)求($\overrightarrow{a}$+λ $\overrightarrow{c}$)和(2$\overrightarrow{b}$-$\overrightarrow{a}$)的坐标
(2)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)∥(2 $\overrightarrow{b}$-$\overrightarrow{a}$),求实数λ;
(3)若($\overrightarrow{a}$+λ $\overrightarrow{c}$)⊥(2 $\overrightarrow{b}$-$\overrightarrow{a}$),求实数λ.

查看答案和解析>>

同步练习册答案