精英家教网 > 高中数学 > 题目详情
6.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{6}$

分析 由四棱锥的三视图可知,该四棱锥底面为ABCD长方形,△PAD是边长为1的等边三角形,PO垂直于AD于点O,其中O为AD的中点,即可求出它的体积、

解答 解:由四棱锥的三视图可知,该四棱锥底面为ABCD为边长为1和2的长方形,
△PAD是边长为1的等边三角形,PO垂直于AD于点O,其中O为AD的中点,
所以四棱锥的体积为V=$\frac{1}{3}$×1×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,
故选:C.

点评 本题主要考查三视图的识别和应用以及锥体的体积的计算,考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{{{b^2}-{a^2}-{c^2}}}{ac}$=$\frac{{cos({A+C})}}{sinAcosA}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.两圆C1:(x+2)2+(y+1)2=4与C2:(x-2)2+(y-1)2=4的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆O:(x-1)2+y2=9,圆O上的直线l:xcosθ+ysinθ=2+cosθ(0<θ<$\frac{π}{2}$)距离为1的点有(  )个.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U={1,2,3,6},集合A={1,3},则∁UA={2,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x)、f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x)、f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二组:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)设f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围;
(3)设f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2,且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在三棱柱ABC-A1B1C1中,底面△ABC是边长为6的等边三角形,点A1
在底面△ABC内的射影为△ABC的中心O,D,E分别为A1B1,BC的中点.
(Ⅰ)求证:DE∥平面ACC1A1
(Ⅱ)若AA1=4$\sqrt{3}$,求四棱锥A1-CBB1C1的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下命题正确的个数为(  )
①若“p且q”与“?p或q”均为假命题,则p真q假;
②“a>0”是“函数f(x)=|(ax-1)x|在区间(-∞,0)上单调递减”的充要条件;
③函数f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,则a的取值范围是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则m<10.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域.
(1)$f(x)=\frac{{\sqrt{{x^2}-2x-15}}}{{|{x+3}|-3}}$
(2)$f(x)=\frac{1}{{1+\frac{1}{x-1}}}+{(2x-1)^0}$.

查看答案和解析>>

同步练习册答案