精英家教网 > 高中数学 > 题目详情
1.已知全集U={1,2,3,6},集合A={1,3},则∁UA={2,6}.

分析 根据补集的定义求得∁UA.

解答 解:全集U={1,2,3,6},集合A={1,3},则∁UA={2,6}.
故答案为:{2,6}.

点评 本题主要考查补集的定义和求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知光线经过已知直线l1:3x-y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.
(1)求点M关于x轴的对称点P的坐标;
(2)求反射光线所在的直线l3的方程.
(3)求与l3距离为$\sqrt{10}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于实数x∈(0,$\frac{π}{2}$),f(x)=$\frac{1}{{9{{sin}^2}x}}$+$\frac{4}{{9{{cos}^2}x}}$.
(1)若f(x)≥t恒成立,求t的最大值M;
(2)在(1)的条件下,求不等式x2+|x-2|+M≥3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的$\frac{3}{2}$倍,则圆锥的高与球半径之比为(  )
A.16:9B.9:16C.27:8D.8:27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=$\frac{1}{4}$x上一点M到焦点的距离为1,则点M的横坐标为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/mm5859616263646566676868707173合计
件数11356193318442121100
经计算,样本的平均值μ=65,标准差σ=2.2,以频率值作为概率的估计值.
(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(P表示相应事件的概率):①P(μ-σ<X≤μ+σ)≥0.6826;②P(μ-2σ<X≤μ+2σ)≥0.9544;③P(μ-3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁.试判断设备M的性能等级.
(Ⅱ)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品.
(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;
(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且a1=1,an=$\frac{2S_n^2}{{2{S_n}-1}}({n≥2})$.
(Ⅰ)求证:$\left\{{\frac{1}{S_n}}\right\}$是等差数列,并求Sn的表达式;
(Ⅱ)若存在正数k,使得对任意n∈N*,都有(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列判断错误的是(  )
A.若随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
B.若n组数据(x1,y1)…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1
C.“x0为函数f(x)的极值点”是“f′(x0)=0”的充分不必要条件
D.若随机变量ξ服从二项分布:ξ~B(5,$\frac{1}{5}$),则Eξ=1

查看答案和解析>>

同步练习册答案