精英家教网 > 高中数学 > 题目详情
9.抛物线y2=$\frac{1}{4}$x上一点M到焦点的距离为1,则点M的横坐标为$\frac{15}{16}$.

分析 求得抛物线的焦点和准线方程,运用抛物线的定义,可得x+$\frac{1}{16}$=1,即可解得x.

解答 解:抛物线y2=$\frac{1}{4}$x的焦点F为($\frac{1}{16}$,0),
准线l为x=-$\frac{1}{16}$,
∵抛物线y2=$\frac{1}{4}$x上一点M到焦点的距离为1,
∴由抛物线的定义可得,|MF|=x+$\frac{1}{16}$=1,
解得x=$\frac{15}{16}$,
故答案为:$\frac{15}{16}$.

点评 本题考查抛物线的定义、方程和性质,主要考查定义的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设x>0,y∈R,则“x>y”是“x>|y|”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设F1,F2为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,过右焦点的直线l与椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)交于A,B两点,与y轴交于M点,且满足$\overrightarrow{A{F_2}}$=3$\overrightarrow{{F_2}B}$,$\overrightarrow{MA}$=$\overrightarrow{A{F_2}}$,则椭圆的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知动圆P过点A(-2,0)且与圆B:(x-2)2+y2=36内切.
(1)求动圆圆心P的轨迹E的方程;
(2)若轨迹E上有一动点Q,满足∠AQB=60°,求|QA|•|QB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线5x2-ky2=5的一个焦点坐标是(2,0),那么k的值为(  )
A.3B.5C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U={1,2,3,6},集合A={1,3},则∁UA={2,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex(2x-1),g(x)=ax-a(a∈R).
(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;
(2)若对任意的实数x都有f(x)≥g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列各式的值:
(1)$ln\sqrt{e}$;            
(2)log26-log23;
(3)${log_3}(27×{9^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
(5)甲必须在乙的右边,可有多少种不同的排法?

查看答案和解析>>

同步练习册答案