精英家教网 > 高中数学 > 题目详情
5.求下列各式的值:
(1)$ln\sqrt{e}$;            
(2)log26-log23;
(3)${log_3}(27×{9^2})$.

分析 根据对数对数的运算法则计算即可.

解答 解:(1)$ln\sqrt{e}$=$\frac{1}{2}$lne=$\frac{1}{2}$          
(2)log26-log23=log22=1
(3)${log_3}(27×{9^2})$=log337=7log33=7.

点评 本题考查了对数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数).以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xoy取相同的单位长度,建立极坐标系.已知直线l的极坐标方程为ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的$\sqrt{3}$,2倍后得到曲线C2,试写出曲线C2的参数方程和直线l的直角坐标方程;
(2)求曲线C2上求一点P,使P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=$\frac{1}{4}$x上一点M到焦点的距离为1,则点M的横坐标为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/mm5859616263646566676868707173合计
件数11356193318442121100
经计算,样本的平均值μ=65,标准差σ=2.2,以频率值作为概率的估计值.
(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(P表示相应事件的概率):①P(μ-σ<X≤μ+σ)≥0.6826;②P(μ-2σ<X≤μ+2σ)≥0.9544;③P(μ-3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁.试判断设备M的性能等级.
(Ⅱ)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品.
(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;
(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln$\frac{x+1}{x-1}$.
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)>ln$\frac{m}{(x-1)(7-x)}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且a1=1,an=$\frac{2S_n^2}{{2{S_n}-1}}({n≥2})$.
(Ⅰ)求证:$\left\{{\frac{1}{S_n}}\right\}$是等差数列,并求Sn的表达式;
(Ⅱ)若存在正数k,使得对任意n∈N*,都有(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.双曲线${x^2}-\frac{y^2}{m^2}=1$与椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的焦点相同,则双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,则y的最大值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设(x1,y1),(x2,y2),…,(xn,yn)是变量x,y的n个样本点,直线m是由这些样本点通过最小二乘法得到的线性回归直线,以下结论正确的是(  )
A.x和y的相关系数为直线m的斜率
B.x和y的相关系数为任意实数
C.当n为偶数时,分布在m两侧的样本点的个数一定相同
D.直线m过点$({\overline x,\overline y})$

查看答案和解析>>

同步练习册答案