精英家教网 > 高中数学 > 题目详情
19.设x>0,y∈R,则“x>y”是“x>|y|”的必要不充分条件.

分析 根据充要条件的定义,逐一分析“x>y”⇒x>|y|”和“x>|y|”⇒“x>y”的真假,可得答案.

解答 解:当x=1,y=-2时,“x>y”成立,但“x>|y|”不成立,
故“x>y”是“x>|y|”的不充分条件,
当“x>|y|”时,若y≤0,“x>y”显然成立,
若y>0,则“x>|y|=y”,即“x>y”成立,
故“x>y”是“x>|y|”的必要条件,
故“x>y”是“x>|y|”的必要不充分条件,
故答案为:必要不充分.

点评 本题考查的知识点是充要条件的定义,正确理解充要条件的定义是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC.
(Ⅰ) 求角B的大小;
(Ⅱ) 设$\vec m$=(sinA,cos2A),$\vec n$=(4k,1)(k>1),且$\vec m$•$\vec n$的最大值是7,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,已知a1=$\frac{1}{5}$,a3=5,则a2=(  )
A.1B.3C.±1D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直二面角A-BD-C,平面ABD⊥平面BCD,若其中给定 AB=AD=2,∠BAD=90°,∠BDC=60°,BC⊥CD.
(Ⅰ)求AC与平面BCD所成的角;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F1、F2是椭圆C的两个焦点,P为椭圆上一点,若$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,且△PF1F2的面积和周长均为为16,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知光线经过已知直线l1:3x-y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.
(1)求点M关于x轴的对称点P的坐标;
(2)求反射光线所在的直线l3的方程.
(3)求与l3距离为$\sqrt{10}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x) 在点(1,0)处的切线方程;
(Ⅱ)设函数g(x)=f(x)-a(x-1)其中a∈R,求函数g(x) 在[1,e]上的最小值.(其中e 为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数).以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xoy取相同的单位长度,建立极坐标系.已知直线l的极坐标方程为ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的$\sqrt{3}$,2倍后得到曲线C2,试写出曲线C2的参数方程和直线l的直角坐标方程;
(2)求曲线C2上求一点P,使P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=$\frac{1}{4}$x上一点M到焦点的距离为1,则点M的横坐标为$\frac{15}{16}$.

查看答案和解析>>

同步练习册答案