精英家教网 > 高中数学 > 题目详情
10.在等比数列{an}中,已知a1=$\frac{1}{5}$,a3=5,则a2=(  )
A.1B.3C.±1D.±3

分析 利用等比数列的性质即可得出.

解答 解:由等比数列的性质可得:a2=±$\sqrt{{a}_{1}{a}_{3}}$=±$\sqrt{\frac{1}{5}×5}$=±1,
故选:C.

点评 本题考查了等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=2an-n+1,n∈N*,a1=3,
(1)求a2-2,a3-3,a4-4的值;
(2)根据(1)的结果试猜测{an-n}是否为等比数列,证明你的结论,并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C的顶点在坐标原点O,焦点为F(1,0),经过点F的直线l与抛物线C相交于A、B两点.
(1)求抛物线C的标准方程;
(2)若△AOB的面积为4,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,已知a1=1,2Sn=(n+1)an,n∈N*
(I)求数列{an}的通项公式;
(II)令bn=$\frac{1}{(n+2){a}_{n}}$,数列{bn}的前n和为Tn,试着比较Tn与$\frac{3}{4}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.非空集合G关于运算⊕满足:(1)对任意a,b∈G,都有a⊕b∈G;
(2)存在e∈G,使得对一切a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.
现给出下列集合和运算:
①G={非负整数},⊕为整数的加法;
②G={偶数},⊕为整数的乘法;
③G={平面向量},⊕为平面向量的加法;
④G={二次三项式},⊕为多项式的加法;
⑤G={虚数},⊕为复数的乘法.
其中G关于运算⊕为“融洽集”的是(  )
A.①③B.②③C.①⑤D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,设命题p:函数y=ax在R上调单调递增;q:不等式ax2-ax+1>0对任意x∈R恒成立,若“p或q为真,p且q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在等差数列中,a2=3,a5=6,则公差d=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x>0,y∈R,则“x>y”是“x>|y|”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设F1,F2为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,过右焦点的直线l与椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)交于A,B两点,与y轴交于M点,且满足$\overrightarrow{A{F_2}}$=3$\overrightarrow{{F_2}B}$,$\overrightarrow{MA}$=$\overrightarrow{A{F_2}}$,则椭圆的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案