分析 (1)依题意,不难得到||PA|+|PB|=6,转化为椭圆定义,求出动圆圆心P的轨迹的方程.
(2)利用余弦定理及椭圆的定义,建立方程,即可得出结论.
解答 解:(1)依题意,动圆与定圆相内切,得|PA|+|PB|=6,可知P到两个定点A、B的距离的和为常数6,并且常数大于|AB|,所以点P的轨迹为以A、B焦点的椭圆,可以求得a=3,c=2,b=$\sqrt{5}$,
所以动圆圆心P的轨迹E的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1;
(2)设|QA|=m,|QB|=n,
则由余弦定理可得16=m2+n2-2mn×$\frac{1}{2}$=m2+n2-mn=(m+n)2-3mn,
∵m+n=6,
∴mn=$\frac{20}{3}$,即|QA|•|QB|=$\frac{20}{3}$.
点评 本题考查圆与圆的位置关系,椭圆的定义,余弦定理的运用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{3}$ | B. | 16 | C. | $16\sqrt{3}$ | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16:9 | B. | 9:16 | C. | 27:8 | D. | 8:27 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 68 | 70 | 71 | 73 | 合计 |
| 件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com