精英家教网 > 高中数学 > 题目详情
18.集合M={x|lg(1-x)<0},集合N={x|-1≤x≤1},则M∩N=(0,1).

分析 分别求出关于集合A、B中x的范围,从而求出其交集即可.

解答 解:∵M={x|lg(1-x)<0}={x|0<x<1},
N={x|-1≤x≤1},
∴M∩N=(0,1),
故答案为:(0,1).

点评 本题考查了集合的交集的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若角α的终边过点P(-1,3),则sinα的值为(  )
A.$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.±$\frac{3\sqrt{10}}{10}$D.±$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{{{b^2}-{a^2}-{c^2}}}{ac}$=$\frac{{cos({A+C})}}{sinAcosA}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定下列四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则b2>a2
②已知直线l,平面α,β为不重合的两个平面,若l⊥α,且α⊥β,则l∥β;
③若-1,a,b,c,-16成等比数列,则b=-4;
④设a>b>1,c<0,则logb(a-c)>loga(b-c).
其中真命题编号是①③④(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中,有an+1=an+4且a1+a4=14
(1)求{an}的通项公式an与前n项和公式Sn
(2)令bn=$\frac{{S}_{n}}{n+k}$( k∈Z),若{bn}是等差数列,数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn≤$\frac{m}{100}$恒成立,求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-x2-x+4 (x∈R)的递减区间是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.两圆C1:(x+2)2+(y+1)2=4与C2:(x-2)2+(y-1)2=4的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆O:(x-1)2+y2=9,圆O上的直线l:xcosθ+ysinθ=2+cosθ(0<θ<$\frac{π}{2}$)距离为1的点有(  )个.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下命题正确的个数为(  )
①若“p且q”与“?p或q”均为假命题,则p真q假;
②“a>0”是“函数f(x)=|(ax-1)x|在区间(-∞,0)上单调递减”的充要条件;
③函数f(x)=3ax+1-2a在(-1,1)上存在x0,使得f(x0)=0,则a的取值范围是a<-1或$a>\frac{1}{5}$;
 ④若向量$\overrightarrow a=({-1,2,3}),\overrightarrow b=({2,m,-6})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则m<10.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案