分析 (1)根据不等式的绝对值的几何意义即可求出.
(2)进行分类讨论,分别解出3种情况下不等式的解集,最后取并集可得原不等式的解集.
解答 解:(1)因为f(x)=|x+a|+|x-2|≥|(x+a)-(x-2)|=|a+2|=1,所以a=-3或a=-1.
(2)由f(x)≥3得,|x-3|+|x-2|≥3.
当x≤2时,不等式可化为5-2x≥3,所以x≤1;
当2<x<3时,不等式可化为1≥3,无解;
当x≥3时,不等式可化为2x-5≥3,所以x≥4.
综上所述,不等式f(x)≥3的解集为{x|x≥4或x≤1}.
点评 本题给出含有绝对值的函数,求不等式f(x)≥3的解集.着重考查了绝对值的意义、分段函数的应用和不等式的解法等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a+\overrightarrow b$ | B. | $\overrightarrow a-\overrightarrow b$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{4}$) | B. | (0,$\frac{1}{2}$) | C. | (0,$\frac{1}{4}$) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com