精英家教网 > 高中数学 > 题目详情
12.在平行四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a+\overrightarrow b$B.$\overrightarrow a-\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

分析 用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{AO}$,$\overrightarrow{OB}$得出结论.

解答 解:设AC,BD的交点为O,
则$\overrightarrow{AO}$=$\frac{1}{2}$$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{a}$,$\overrightarrow{OB}$=-$\frac{1}{2}$$\overrightarrow{BD}$=-$\frac{1}{2}$$\overrightarrow{b}$,
∴$\overrightarrow{AB}$=$\overrightarrow{AO}+\overrightarrow{OB}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$.
故选D.

点评 本题考查了平面向量的几何运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.圆x2+y2=9的切线MT过双曲线$\frac{x^2}{9}$-$\frac{y^2}{12}$=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|-|PT|=2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,若4是2a与2b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.1B.8C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知中心在坐标原点O,焦点在y轴上的椭圆C的右顶点和上顶点分别为A、B,若△AOB的面积为$\frac{\sqrt{2}}{2}$.且直线AB经过点P(-2,3$\sqrt{2}$)
(1)求椭圆C的方程;
(2)过点S(-$\frac{1}{3}$,0)的动直线l交椭圆C于M,N两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以MN为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+a|+|x-2|(a∈R).
(1)若f(x)的最小值为1,求实数a的值;
(2)若a=-3,求不等式f(x)≥3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$f(x)=\left\{\begin{array}{l}sinx\\ 5\frac{|x|}{x}\end{array}\right.\begin{array}{l},x>0\\ \\,x<0\end{array}$,则f(-1)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,A,B,C,D为平面四边形ABCD的四个内角.
(1)证明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$;
(2)已知AB=6,BC=3,CD=4,AD=5,
①若A+C=180°,求tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$的值;
②求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a52=(  )
$({\begin{array}{l}{{a_{41}}}&{{a_{42}}}&{{a_{43}}}\\{{a_{51}}}&{{a_{52}}}&{{a_{53}}}\\{{a_{61}}}&{{a_{62}}}&{{a_{63}}}\end{array}})$.
A.2B.8C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.${[{\frac{1+i}{1-i}}]^6}$+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$=(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

同步练习册答案