精英家教网 > 高中数学 > 题目详情
15.圆x2+y2=9的切线MT过双曲线$\frac{x^2}{9}$-$\frac{y^2}{12}$=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|-|PT|=2$\sqrt{3}$-3.

分析 由双曲线方程,求得c=$\sqrt{21}$,根据三角形中位线定理和圆的切线的性质,可知|PO|=$\frac{1}{2}$|PF′|,|PT|=$\frac{1}{2}$|MF|-|FT|,并结合双曲线的定义可得|PO|-|PT|=|FT|-$\frac{1}{2}$(|PF|-|PF′|)=2$\sqrt{3}$-3.

解答 解:设双曲线的右焦点为F′,则PO是△PFF′的中位线,
∴|PO|=$\frac{1}{2}$|PF′|,|PT|=$\frac{1}{2}$|MF|-|FT|,
根据双曲线的方程得:
a=3,b=2$\sqrt{3}$,c=$\sqrt{21}$,
∴|OF|=$\sqrt{21}$,
∵MF是圆x2+y2=9的切线,|OT|=3,
∴Rt△OTF中,|FT|=$\sqrt{丨OF{丨}^{2}-丨OT{丨}^{2}}$=2$\sqrt{3}$,
∴|PO|-|PT|=$\frac{1}{2}$|PF′|-($\frac{1}{2}$|MF|-|FT|)=|FT|-$\frac{1}{2}$(|PF|-|PF′|)=2$\sqrt{3}$-3,
故答案为:2$\sqrt{3}$-3.

点评 本题考查了双曲线的定义标准方程及其性质、三角形的中位线定理、圆的切线的性质、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,则实数a的值为(  )
A.0或1或2B.1或2C.0D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定下列四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则b2>a2
②已知直线l,平面α,β为不重合的两个平面,若l⊥α,且α⊥β,则l∥β;
③若-1,a,b,c,-16成等比数列,则b=-4;
④设a>b>1,c<0,则logb(a-c)>loga(b-c).
其中真命题编号是①③④(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-x2-x+4 (x∈R)的递减区间是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.两圆C1:(x+2)2+(y+1)2=4与C2:(x-2)2+(y-1)2=4的位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左.右焦点分别为F1,F2,上顶点与两焦点构成的三角形为正三角形.
(1)求椭圆C的离心率;
(2)过点F2的直线与椭圆C交于A.B两点,若△F1AB的内切圆的面积的最大值为$\frac{9π}{16}$.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆O:(x-1)2+y2=9,圆O上的直线l:xcosθ+ysinθ=2+cosθ(0<θ<$\frac{π}{2}$)距离为1的点有(  )个.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x)、f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x)、f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二组:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)设f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围;
(3)设f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2,且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a+\overrightarrow b$B.$\overrightarrow a-\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

同步练习册答案