·ÖÎö £¨1£©ÓÉÅ×ÎïÏß·½³ÌÇó³öÅ×ÎïÏߵĽ¹µã×ø±ê£¬¿ÉµÃcÖµ£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇóµÃa£¬ÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃ|PQ|£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇóµÃOµ½Ö±ÏßlµÄ¾àÀ룬½áºÏ¡÷POQµÄÃæ»ýΪ¶¨Öµ$\sqrt{3}$ÇóµÃkÓëmµÄ¹ØÏµ£¬´úÈëбÂʹ«Ê½¿ÉµÃÖ±ÏßOPÓëOQµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨Öµ£®
½â´ð ½â£º£¨1£©ÓÉy2=4x£¬µÃp=2£¬Ôò$\frac{p}{2}=1$£¬¡àc=1£¬
ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽµÃa=$\frac{|-2\sqrt{2}|}{\sqrt{1+1}}=2$£¬
¡àb2=a2-c2=3£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£»
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨3+4k2£©x2+8mkx+4£¨m2-3£©=0£¬
¡÷=64m2k2-16£¨3+4k2£©£¨m2-3£©£¾0£¬¼´3+4k2-m2£¾0£¬
${x_1}+{x_2}=-\frac{8mk}{{3+4{k^2}}}$£¬${x_1}{x_2}=\frac{{4£¨{m^2}-3£©}}{{3+4{k^2}}}$£¬
${y_1}{y_2}=£¨k{x_1}+m£©£¨k{x_2}+m£©={k^2}{x_1}{x_2}+mk£¨{x_1}+{x_2}£©+{m^2}=\frac{{3£¨{m^2}-4{k^2}£©}}{{3+4{k^2}}}$£¬
¡à$|PQ|=\sqrt{1+{k^2}}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\frac{{\sqrt{1+{k^2}}\sqrt{48£¨4{k^2}-{m^2}+3£©}}}{{3+4{k^2}}}$£¬
Oµ½Ö±ÏßlµÄ¾àÀë$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$£¬
¡à${S_{¡÷POQ}}=\sqrt{3}=\frac{1}{2}|PQ|\;•\;d=\frac{1}{2}\frac{{\sqrt{1+{k^2}}\sqrt{48£¨4{k^2}-{m^2}+3£©}}}{{3+4{k^2}}}\;•\;\frac{|m|}{{\sqrt{1+{k^2}}}}$£¬¿ÉµÃ2m2-4k2=3£®
Ôò${k_{OP}}\;•\;{k_{OQ}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=\frac{{3£¨{m^2}-4{k^2}£©}}{{4£¨{m^2}-3£©}}=-\frac{3}{4}$£¬
¡àkOP•kOQΪ¶¨Öµ$-\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Ó㬿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ¼°ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÊôÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 8 | C£® | 7 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | -2 | C£® | 5 | D£® | -3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $[k¦Ð-\frac{¦Ð}{3}£¬k¦Ð+\frac{¦Ð}{6}]£¨k¡ÊZ£©$ | B£® | $[k¦Ð£¬k¦Ð+\frac{¦Ð}{2}]£¨k¡ÊZ£©$ | C£® | $[k¦Ð+\frac{¦Ð}{6}£¬k¦Ð+\frac{2¦Ð}{3}]£¨k¡ÊZ£©$ | D£® | $[k¦Ð-\frac{¦Ð}{2}£¬k¦Ð]£¨k¡ÊZ£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=|sinx| | B£® | y=|cos2x| | C£® | y=tan2x | D£® | y=sin2x£¬x¡Ê£¨0£¬2¦Ð£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com