精英家教网 > 高中数学 > 题目详情
18.设集合M={(x,y)|x2+y2≤4},集合N={(x,y)|(x-1)2+(y-1)2≤r2}(r>0).
(1)当M∩N=N时,求实数r的取值范围;
(2)当M∩N≠∅时,求实数r的取值范围.

分析 (1)由已知中集合N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},M={(x,y)|x2+y2≤4},若M∩N=N,判断出两个集合中的圆关系为内切或内含,由圆心距与半径之间的关系,构造关于r的不等式,解不等式即可得到实数r的取值范围;
(2)由(1)得,M∩N不可能是∅.

解答 解:(1)若M∩N=N,则N与M表示的圆内切或内含
由于N中的圆的圆心为N(1,1),半径为r,
M中的圆的圆心为M(0,0),半径为2,
则2-r≥|MN|=$\sqrt{2}$,
∴0<r≤2-$\sqrt{2}$;
(2)由(1)得:只需r>0时:
M∩N≠∅.

点评 本题考查的知识点是圆与圆的位置关系及其判定,其中根据集合之间的关系,转化为圆与圆的位置关系,进而转化为圆心距与半径差之间的关系,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\sqrt{(ax-5)(a-{x}^{2})}$的定义域为A,集合B={x||x-a|>2},已知命题p:3∈A,命题q:10∈B,若p真且q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式|x|3-2x2-5|x|+6<0的解集是(1,3)∪(-3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列结论正确的是③
①偶函数的图象一定与y轴相交;
②奇函数的图象一定过原点;
③偶函数的图象若不经过原点,则它与x轴的交点的个数一定是偶数;
④定义在R上的增函数一定是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等差数列的前4项和为30,前8项和为100,则它的前16项和为360.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合A={x|y=$\frac{1}{\sqrt{x-1}}$},B={y|y=-x2+2x-2,x∈R}.
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合M={1,x,y},N={x,x2,xy},且M=N,则x2015+y2016=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合{a,b,c,d,e}的真子集共有31个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.x1,x2,x3,x4,x5是正整数,任取四个其和组成的集合为{44,45,46,47}.求这五个数.

查看答案和解析>>

同步练习册答案