·ÖÎö £¨¢ñ£©ÇóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½$\frac{1}{2}$£¨a+c£©b=$\frac{\sqrt{2}+1}{2}$£¬¸ù¾ÝÍÖÔ²µÄÀëÐÄÂʼ°a£¬bºÍcµÄ¹ØÏµ£¬ÇóµÃaÓëbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©µ±Ð±ÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½¿ÉÖªk1+k3=$\frac{{y}_{1}-t}{{x}_{1}-2}$+$\frac{{y}_{2}-t}{{x}_{2}-2}$£¬´úÈë¼´¿ÉÇóµÃk1+k3=2t£¬Ôòk2=$\frac{t}{2-1}$=t£¬¼´¿ÉÇóµÃ¦ËµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉF1£¨-c£¬0£©£¬A£¨a£¬0£©£¬B£¨0£¬b£©£¬
ÔòS${\;}_{¡÷AB{F}_{1}}$=$\frac{1}{2}$£¨a+c£©b=$\frac{\sqrt{2}+1}{2}$£¬
Ôò£¨a+c£©b=$\sqrt{2}$+1£¬¼´£¨a+c£©$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$+1£¬
ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬
Ôò£¨$\sqrt{2}$c+c£©$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$+1£¬
½âµÃ£ºc=1£¬Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª£ºF2µÄ×ø±êΪF2£¨1£¬0£©£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬M£¨2£¬t£©£¬
µ±Ö±ÏßlµÄбÂʲ»Îª0ʱ£¬ÉèlµÄ·½³ÌΪx=my+1£¬
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xµÃ£¨m2+2£©y2+2my-1=0£¬
Ôòy1+y2=-$\frac{2m}{{m}^{2}+2}$£¬y1y2=-$\frac{1}{{m}^{2}+2}$£¬
Ôòk1+k3=$\frac{{y}_{1}-t}{{x}_{1}-2}$+$\frac{{y}_{2}-t}{{x}_{2}-2}$=$\frac{{y}_{1}-t}{m{y}_{1}-1}$•$\frac{{y}_{2}-t}{m{y}_{2}-1}$=$\frac{£¨{y}_{1}-t£©£¨m{y}_{2}-1£©+£¨{y}_{2}-t£©£¨m{y}_{1}-1£©}{£¨m{y}_{1}-1£©£¨m{y}_{2}-1£©}$=$\frac{2m{y}_{1}{y}_{2}-£¨mt+1£©£¨{y}_{1}+{y}_{2}£©+2t}{{m}^{2}{y}_{1}{y}_{2}-m£¨{y}_{1}+{y}_{2}£©+1}$£¬
=$\frac{-\frac{2m}{{m}^{2}+2}+\frac{2m£¨mt+1£©}{{m}^{2}+2}+2t}{-\frac{{m}^{2}}{{m}^{2}+2}+\frac{2{m}^{2}}{{m}^{2}+2}+1}$£¬
=$\frac{4{m}^{2}t+4t}{2{m}^{2}+2}$=2t£¬
ÓÉk2=$\frac{t}{2-1}$=t£¬Ôòk1+k3=2k2£¬
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬ÏÔÈ»k1+k3=$\frac{t}{2+\sqrt{2}}$+$\frac{t}{2-\sqrt{2}}$=2t=2k2£¬
k1+k3=2k2£¬³ÉÁ¢£¬
×ÛÉÏ¿ÉÖª£º´æÔÚ¦Ë=2£¬Ê¹µÃk1+k3=¦Ëk2³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | i£¾8 | B£® | i£¾9 | C£® | i£¾10 | D£® | i£¾11 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com