2£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊÊÇ$\frac{\sqrt{2}}{2}$£¬F1¡¢F2ÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬µãAΪÍÖÔ²µÄÓÒ¶¥µã£¬µãBΪÍÖÔ²µÄÉ϶¥µã£¬ÇÒS${\;}_{¡÷AB{F}_{1}}$=$\frac{\sqrt{2}+1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl¹ýÓÒ½¹µãF2ÇÒ½»ÍÖÔ²EÓÚP¡¢QÁ½µã£¬µãMÊÇÖ±Ïßx=2ÉϵÄÈÎÒâÒ»µã£¬Ö±ÏßMP¡¢MF2¡¢MQµÄбÂÊ·Ö±ðΪk1¡¢k2¡¢k3£¬ÎÊÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃk1+k3=¦Ëk2³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÇóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½$\frac{1}{2}$£¨a+c£©b=$\frac{\sqrt{2}+1}{2}$£¬¸ù¾ÝÍÖÔ²µÄÀëÐÄÂʼ°a£¬bºÍcµÄ¹ØÏµ£¬ÇóµÃaÓëbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©µ±Ð±ÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½¿ÉÖªk1+k3=$\frac{{y}_{1}-t}{{x}_{1}-2}$+$\frac{{y}_{2}-t}{{x}_{2}-2}$£¬´úÈë¼´¿ÉÇóµÃk1+k3=2t£¬Ôòk2=$\frac{t}{2-1}$=t£¬¼´¿ÉÇóµÃ¦ËµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉF1£¨-c£¬0£©£¬A£¨a£¬0£©£¬B£¨0£¬b£©£¬
ÔòS${\;}_{¡÷AB{F}_{1}}$=$\frac{1}{2}$£¨a+c£©b=$\frac{\sqrt{2}+1}{2}$£¬
Ôò£¨a+c£©b=$\sqrt{2}$+1£¬¼´£¨a+c£©$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$+1£¬
ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬
Ôò£¨$\sqrt{2}$c+c£©$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$+1£¬
½âµÃ£ºc=1£¬Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª£ºF2µÄ×ø±êΪF2£¨1£¬0£©£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬M£¨2£¬t£©£¬
µ±Ö±ÏßlµÄбÂʲ»Îª0ʱ£¬ÉèlµÄ·½³ÌΪx=my+1£¬
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xµÃ£¨m2+2£©y2+2my-1=0£¬
Ôòy1+y2=-$\frac{2m}{{m}^{2}+2}$£¬y1y2=-$\frac{1}{{m}^{2}+2}$£¬
Ôòk1+k3=$\frac{{y}_{1}-t}{{x}_{1}-2}$+$\frac{{y}_{2}-t}{{x}_{2}-2}$=$\frac{{y}_{1}-t}{m{y}_{1}-1}$•$\frac{{y}_{2}-t}{m{y}_{2}-1}$=$\frac{£¨{y}_{1}-t£©£¨m{y}_{2}-1£©+£¨{y}_{2}-t£©£¨m{y}_{1}-1£©}{£¨m{y}_{1}-1£©£¨m{y}_{2}-1£©}$=$\frac{2m{y}_{1}{y}_{2}-£¨mt+1£©£¨{y}_{1}+{y}_{2}£©+2t}{{m}^{2}{y}_{1}{y}_{2}-m£¨{y}_{1}+{y}_{2}£©+1}$£¬
=$\frac{-\frac{2m}{{m}^{2}+2}+\frac{2m£¨mt+1£©}{{m}^{2}+2}+2t}{-\frac{{m}^{2}}{{m}^{2}+2}+\frac{2{m}^{2}}{{m}^{2}+2}+1}$£¬
=$\frac{4{m}^{2}t+4t}{2{m}^{2}+2}$=2t£¬
ÓÉk2=$\frac{t}{2-1}$=t£¬Ôòk1+k3=2k2£¬
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬ÏÔÈ»k1+k3=$\frac{t}{2+\sqrt{2}}$+$\frac{t}{2-\sqrt{2}}$=2t=2k2£¬
k1+k3=2k2£¬³ÉÁ¢£¬
×ÛÉÏ¿ÉÖª£º´æÔÚ¦Ë=2£¬Ê¹µÃk1+k3=¦Ëk2³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®µãM£¨x£¬y£©ÔÚ|x|+|y|¡Ü2±íʾµÄÆ½ÃæÇøÓòÄÚ£¬ÔòµãM£¨x£¬y£©Âú×ãx+y-1¡Ý0µÄ¸ÅÂÊΪ0.25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊýÁÐ{an}Âú×ãal=-2£¬an+1=2an+4£®
£¨I£©Ö¤Ã÷ÊýÁÐ{an+4}ÊǵȱÈÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{|an|}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Çóº¯Êýf£¨x£©=x+$\frac{1}{x}$-1-ln£¨x+3£©ÁãµãµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ¸ø³öµÄÊǼÆËã$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+¡­+$\frac{1}{20}$µÄÖµµÄÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®i£¾8B£®i£¾9C£®i£¾10D£®i£¾11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Í¼ÐεĶԳƣ¬ÕýÏÒÇúÏßµÄÁ÷³©¶¼ÄÜÌåÏÖ¡°ÊýѧÃÀ¡±£®¡°»Æ½ð·Ö¸î¡±Ò²ÊÇÊýѧÃÀµÃ Ò»ÖÖÌåÏÖ£¬Èçͼ£¬ÍÖÔ²µÄÖÐÐÄÔÚÔ­µã£¬FΪ×󽹵㣬µ±$\overrightarrow{FB}¡Í\overrightarrow{AB}$ʱ£¬ÆäÀëÐÄÂÊΪ$\frac{{\sqrt{5}-1}}{2}$£¬´ËÀàÍÖÔ²±»³ÆÎª¡°»Æ½ðÍÖÔ²¡±£¬Àà±È¡°»Æ½ðÍÖÔ²¡±£¬¿ÉÍÆËã³ö¡°»Æ½ðË«ÇúÏß¡±µÄÀëÐÄÂÊeµÈÓÚ$\frac{\sqrt{5}+1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýg£¨x£©=xsin¦È-lnx-sin¦ÈÔÚ[1£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÆäÖЦȡʣ¨0£¬¦Ð£©
£¨1£©Çó¦ÈµÄÖµ£»
£¨2£©Èô$f£¨x£©=g£¨x£©+\frac{2x-1}{x^2}$£¬µ±x¡Ê[1£¬2]ʱ£¬ÊԱȽÏf£¨x£©Óë${f^/}£¨x£©+\frac{1}{2}$µÄ´óС¹ØÏµ£¨ÆäÖÐf¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£©£¬Çëд³öÏêϸµÄÍÆÀí¹ý³Ì£»
£¨3£©µ±x¡Ý0ʱ£¬ex-x-1¡Ýkg£¨x+1£©ºã³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=ex+ax£¬£¨a¡ÊR£©£¬ÆäͼÏóÓëxÖá½»ÓÚA£¨x1£¬0£©£¬B£¨x2£¬0£©Á½µã£¬ÇÒx1£¼x2
£¨1£©ÇóaµÄȡֵ·¶Î§£»
£¨2£©Ö¤Ã÷£º$f'£¨\frac{{3{x_1}+{x_2}}}{4}£©£¼0$£»£¨f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£©
£¨3£©ÉèµãCÔÚº¯Êýf£¨x£©µÄͼÏóÉÏ£¬ÇÒ¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¼Ç$\sqrt{\frac{x_2}{x_1}}=t$£¬Çó£¨t-1£©£¨a+$\sqrt{3}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªa£¾0£¬b£¾0£¬c£¾0£¬º¯Êýf£¨x£©=|x+a|-|x-b|+cµÄ×î´óֵΪ10£®
£¨1£©Çóa+b+cµÄÖµ£»
£¨2£©Çó$\frac{1}{4}$£¨a-1£©2+£¨b-2£©2+£¨c-3£©2µÄ×îСֵ£¬²¢Çó³ö´Ëʱa¡¢b¡¢cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸