分析 (I)数列{an}满足al=-2,an+1=2an+4,an+1+4=2(an+4),即可得出.
(II)由(I)可得:an+4=2n,可得an=2n-4,当n=1时,a1=-2;n≥2时,an≥0,可得n≥2时,Sn=-a1+a2+a3+…+an.
解答 (I)证明:∵数列{an}满足al=-2,an+1=2an+4,∴an+1+4=2(an+4),∴数列{an+4}是等比数列,公比与首项为2.
(II)解:由(I)可得:an+4=2n,∴an=2n-4,∴当n=1时,a1=-2;n≥2时,an≥0,
∴n≥2时,Sn=-a1+a2+a3+…+an=2+(22-4)+(23-4)+…+(2n-4)
=$\frac{2({2}^{n}-1)}{2-1}$-4(n-1)=2n+1-4n+2.n=1时也成立.
∴Sn=2n+1-4n+2.n∈N*.
点评 本题考查了等比数列的通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 16+3π | B. | 12+3π | C. | 8+4$\sqrt{2}$+3π | D. | 4+4$\sqrt{2}$+3π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p:?α∈R,sinα+cosα≥$\sqrt{2}$ | B. | ¬p:?α∈R,sinα+cosα≥$\sqrt{2}$ | ||
| C. | ¬p:?α∈R,sinα+cosα>$\sqrt{2}$ | D. | ¬p:?α∈R,sinα+cosα>$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com