精英家教网 > 高中数学 > 题目详情
1.已知命题P:?α∈R,sinα+cosα≤$\sqrt{2}$,则(  )
A.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$B.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$
C.¬p:?α∈R,sinα+cosα>$\sqrt{2}$D.¬p:?α∈R,sinα+cosα>$\sqrt{2}$

分析 利用全称命题的否定是特称命题,去判断.

解答 解:因为命题是全称命题,根据全称命题的否定是特称命题,
所以命题的否定:¬p:?α∈R,sinα+cosα>$\sqrt{2}$.
故选:C

点评 本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,则$|{{{\overrightarrow e}_1}-2{{\overrightarrow e}_2}}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.点M(x,y)在|x|+|y|≤2表示的平面区域内,则点M(x,y)满足x+y-1≥0的概率为0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a、b、c是正实数,则“a、b、c依次成等差数列”是“$b≥\sqrt{ac}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,\;a∈R$.
(1)若a=-2,求曲线y=f(x)的与直线y=2x+1平行的切线方程;
(2)若a>0,求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Msin(ωx+φ)(M>0)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,若(2a-c)cosB=bcosC,求f($\frac{A}{2}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足al=-2,an+1=2an+4.
(I)证明数列{an+4}是等比数列;
(Ⅱ)求数列{|an|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.求函数f(x)=x+$\frac{1}{x}$-1-ln(x+3)零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:$f'(\frac{{3{x_1}+{x_2}}}{4})<0$;(f′(x)为f(x)的导函数)
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记$\sqrt{\frac{x_2}{x_1}}=t$,求(t-1)(a+$\sqrt{3}$)的值.

查看答案和解析>>

同步练习册答案