精英家教网 > 高中数学 > 题目详情
11.已知单位向量$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,则$|{{{\overrightarrow e}_1}-2{{\overrightarrow e}_2}}|$=$\sqrt{3}$.

分析 运用向量的数量积的定义和性质:向量的平方即为模的平方,计算即可得到.

解答 解:∵单位向量$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,
∴|$\overrightarrow{e_1}$|=|$\overrightarrow{e_2}$|=1,$\overrightarrow{e_1}$•$\overrightarrow{e_2}$=|$\overrightarrow{e_1}$|•|$\overrightarrow{e_2}$|•cos60°=$\frac{1}{2}$
∴$|{{e_1}-2{e_2}}|=\sqrt{e_1^2-4{e_1}{e_2}+4e_2^2}=\sqrt{1-2+4}=\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查向量的数量积的定义和性质,主要考查向量的平方即为模的平方,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围.(  )
A.(-∞,2)B.(2,+∞)C.(-∞,-6)D.(-6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为20cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求实数a的取值范围;
(2)证明:若0<x1<x2,则x1lnx1-x1lnx2>x1-x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{1-2i}{2+i}$=(  )
A.-iB.1+iC.iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,抛物线y2=2px(p>0)的焦点为F,准线交x轴于点H,过H作直线l交抛物线于A,B两点,且|BF|=2|AF|.
(Ⅰ)求直线AB的斜率;
(Ⅱ)若△ABF的面积为$\sqrt{2}$,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.16+3πB.12+3πC.8+4$\sqrt{2}$+3πD.4+4$\sqrt{2}$+3π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设命题p:存在两个相交平面垂直于同一条直线;命题q:?x∈R,x2-2x+1≥0.则下 列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题P:?α∈R,sinα+cosα≤$\sqrt{2}$,则(  )
A.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$B.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$
C.¬p:?α∈R,sinα+cosα>$\sqrt{2}$D.¬p:?α∈R,sinα+cosα>$\sqrt{2}$

查看答案和解析>>

同步练习册答案