精英家教网 > 高中数学 > 题目详情
6.复数$\frac{1-2i}{2+i}$=(  )
A.-iB.1+iC.iD.1-i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{1-2i}{2+i}=\frac{{({1-2i})({2-i})}}{{({2+i})({2-i})}}=\frac{-5i}{5}=-i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知双曲线H:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{3}$=1(m>0)的右焦点到直线l:4x-3y-18=0的距离为2,且双曲线的实轴长小于4,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线l交于点A(n,-2),直线l1:x=$\sqrt{3}$被椭圆E截得的弦长为4$\sqrt{2}$.
(1)求双曲线H的标准方程和渐近线方程;
(2)求椭圆E的标准方程和焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={1,2,3},B={y|y=x-1,x∈A},则A∪B等于(  )
A.{1,2}B.{2,3}C.{0,1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定积分$\int_{-2}^2{|{{x^2}-2x}|dx=}$8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC,B=$\frac{π}{3}$,BC=2,点D在边AB上,AD=DC,DE⊥AC,E为垂足,ED=$\frac{\sqrt{6}}{2}$,则角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,则$|{{{\overrightarrow e}_1}-2{{\overrightarrow e}_2}}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立坐标系,曲线M的极坐标方程为ρ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}$(t为参数,0≤α<π),射线θ=φ,θ=φ+$\frac{π}{4},θ=φ-\frac{π}{4}$与曲线M交于A,B,C三点(异于O点)
(I)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(II)当φ=$\frac{π}{12}$时,直线l经过B,C两点,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆E:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的一个顶点为C(0,-2),直线l与椭圆E交于A、B两点,若E的左焦点为△ABC的重心,则直线l的方程为(  )
A.6x-5y-14=0B.6x-5y+14=0C.6x+5y+14=0D.6x+5y-14=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,\;a∈R$.
(1)若a=-2,求曲线y=f(x)的与直线y=2x+1平行的切线方程;
(2)若a>0,求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

同步练习册答案