精英家教网 > 高中数学 > 题目详情
1.在△ABC,B=$\frac{π}{3}$,BC=2,点D在边AB上,AD=DC,DE⊥AC,E为垂足,ED=$\frac{\sqrt{6}}{2}$,则角A=$\frac{π}{4}$.

分析 先求CD,在△BCD中,由正弦定理可得:$\frac{BC}{sin∠BDC}=\frac{CD}{sinB}$,结合∠BDC=2∠A,即可得结论.

解答 解:∵ED=$\frac{\sqrt{6}}{2}$,∴AD=DC=$\frac{ED}{sinA}=\frac{\sqrt{6}}{2inA}$.
在△BCD中,由正弦定理可得:$\frac{BC}{sin∠BDC}=\frac{CD}{sinB}$.
∵∠BDC=2∠A,∴$\frac{2}{sin2A}=\frac{\sqrt{6}}{2sinAsin6{0}^{0}}$,
∴cosA=$\frac{\sqrt{2}}{2}$,∴A=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$

点评 本题考查余弦定理、正弦定理的运用,考查学生的计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.有两种规格的矩形钢板,甲型的宽度为a,乙型的宽度为2a,长度可以足够长,厚度不计,现把它们切割后拼接成一个角形钢板,焊缝为OM,记∠AOB=θ(0°<θ<180°).
(1)若θ=135°,求tan∠AOM的值
(2)把OM的长度用θ表示,并求OM的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知动点P(x,y)满足:$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{(\sqrt{{x}^{2}+1}-x)(\sqrt{{y}^{2}+1}+y)≥1}\end{array}\right.$,则x2+y2-6x的最小值为$-\frac{40}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题$p:?x∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$,则¬p为(  )
A.$?{x_0}∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$B.$?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$
C.$?x∈({0,+∞}),lnx<2\frac{x-1}{x+1}$D.不存在${x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为菱形,$2\overrightarrow{AF}=\overrightarrow{FP}$,$\overrightarrow{PE}=λ\overrightarrow{ED}$,∠ABC=60°,PA=3,AB=2.
(1)若直线CE与平面BDF没有公共点,求λ;
(2)求平面BDE与平面BDF所夹角的余弦值;
(3)在(1)的条件下,求三棱锥E-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{1-2i}{2+i}$=(  )
A.-iB.1+iC.iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{{a_n}+2}}(n∈{N^*})$,则a10=$\frac{1}{1023}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,则$\frac{x-y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是[$-\sqrt{2}$,-1)∪(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\sqrt{\frac{1}{4}{x^2}-1}+{x^2}-9$的零点个数为(  )
A.0B.2C.4D.6

查看答案和解析>>

同步练习册答案