分析 先求CD,在△BCD中,由正弦定理可得:$\frac{BC}{sin∠BDC}=\frac{CD}{sinB}$,结合∠BDC=2∠A,即可得结论.
解答 解:
∵ED=$\frac{\sqrt{6}}{2}$,∴AD=DC=$\frac{ED}{sinA}=\frac{\sqrt{6}}{2inA}$.
在△BCD中,由正弦定理可得:$\frac{BC}{sin∠BDC}=\frac{CD}{sinB}$.
∵∠BDC=2∠A,∴$\frac{2}{sin2A}=\frac{\sqrt{6}}{2sinAsin6{0}^{0}}$,
∴cosA=$\frac{\sqrt{2}}{2}$,∴A=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$
点评 本题考查余弦定理、正弦定理的运用,考查学生的计算能力,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?{x_0}∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$ | B. | $?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | ||
| C. | $?x∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | D. | 不存在${x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com