精英家教网 > 高中数学 > 题目详情

【题目】某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1x)xlg20.3ln102.30)

【答案】16.1%.

【解析】试题分析:设每年的年产值增长率是 ,由题意可得: 化为 ,即可得出 ,解出即可得出

试题解析:设每年年增长率为x

100(1x)10500,即(1x)105

两边取常用对数,得

10·lg(1x)lg5

lg(1x) (lg10lg2).

lg(1x)

ln(1x)lg(1x)·ln10.

ln(1x)×ln10×2.300.16116.1%.

又由已知条件:ln(1x)xx16.1%.

故每年的平均增长率约为16.1%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,D

的中点,AC⊥平面BCC1B1

(Ⅰ)证明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的长;

(2)求三棱锥C-DB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为为圆心4为半径;又直线的极坐标方程为

(Ⅰ)求直线和圆的普通方程;

试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在的展开式中,第5项的系数与第3项的系数之比是563

1)求展开式中的所有有理项;

2)求展开式中系数绝对值最大的项.

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)3ax22bxcabc0f(0)>0f(1)>0,证明a>0,并利用二分法证明方程f(x)0在区间[0,1]内有两个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017长沙模拟】如图,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.

(1)求证:AD⊥C1E;

(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1A1B1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列5个命题中正确命题的个数是( )

①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;

②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;

③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;

④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为

⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.

A.2 B.3

C.4 D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人对东北一种松树的生长进行了研究,收集了其高度h()与生长时间t()的相关数据,选择hmtbh=loga(t+1)来刻画ht的关系,你认为哪个符合?并预测第8年的松树高度.

t()

1

2

3

4

5

6

h()

0.6

1

1.3

1.5

1.6

1.7

查看答案和解析>>

同步练习册答案