【题目】已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在区间[0,1]内有两个实根.
【答案】见解析
【解析】试题分析:根据函数解析式代入f(0)>0、f(1)>0,得c>0且3a+2b+c>0,结合a+b+c=0化简即可得到a>0;利用a+b+c=0化简得f(
)=-
,结合a>0,可得f(
)<0,由f(
)与f(0),f(1)都异号,利用零点存在性定理得f(x)=0在区间
和
上各有一个零点,由此可得f(x)=0在区间[0,1]内有两个实根.
试题解析:
∵f(1)>0,∴3a+2b+c>0,
即3(a+b+c)-b-2c>0.
∵a+b+c=0,∴-b-2c>0,
则-b-c>c,即a>c.
∵f(0)>0,∴c>0,则a>0.
在区间[0,1]内选取二等分点
,
则f
=
a+b+c=
a+(-a)=-
a<0.
∵f(0)>0,f(1)>0,
∴函数f(x)在区间
和
上各有一个零点.
又f(x)最多有两个零点,从而f(x)=0在[0,1]内有两个实根.
科目:高中数学 来源: 题型:
【题目】【四川省高2017届第一次名校联考(广志联考)(理)】已知函数
.
(Ⅰ)当
时,存在
使不等式
成立,求实数
的取值范围;
(Ⅱ)若在区间
上,函数
的图象恒在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与圆
的公共点的轨迹为曲线
,且曲线
与
轴的正半轴相交于点
.若曲线
上相异两点
满足直线
的斜率之积为
.
(1)求
的方程;
(2)证明直线
恒过定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
某公司经销某产品,第
天
的销售价格为
(
为常数)(元∕件),第
天的销售量为
(件),且公司在第
天该产品的销售收入为
元.
(1)求该公司在第
天该产品的销售收入是多少?
(2)这
天中该公司在哪一天该产品的销售收入最大?最大收入为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.直线
过点
.
(1)若直线
与曲线
交于
两点,求
的值;
(2)求曲线
的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
。
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com