精英家教网 > 高中数学 > 题目详情
已知是由满足下述条件的函数构成的集合:对任意
① 方程有实数根;② 函数的导数满足
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,当,且时,
(Ⅰ)函数是集合中的元素.
(Ⅱ)方程有且只有一个实数根.
(Ⅲ)对于任意符合条件的,总有成立.

试题分析:(Ⅰ)因为①当时,
所以方程有实数根0;

所以,满足条件
由①②,函数是集合中的元素.            5分
(Ⅱ)假设方程存在两个实数根
.
不妨设,根据题意存在
满足.
因为,且,所以.
与已知矛盾.又有实数根,
所以方程有且只有一个实数根.                     10分
(Ⅲ)当时,结论显然成立;                   11分
,不妨设.
因为,且所以为增函数,那么.
又因为,所以函数为减函数,
所以.
所以,即.
因为,所以, (1)
又因为,所以, (2)
(1)(2)得.
所以.
综上,对于任意符合条件的,总有成立.  14分
点评:综合题,本题综合性较强,难度较大。证明方程只有一个实根,可通过构造函数,研究其单调性实现,本解法运用的是反证法。由自变量取值,且,确定函数值的关系,关键是如何实现两者的有机转换。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数y=的单调区间为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设偶函数f(x)的定义域为R,当x时f(x)是增函数,则f(-2),f(),f(-3)的大小关系是:(     )
A.f()>f(-3)>f(-2)B.f()>f(-2)>f(-3)
C.f()<f(-3)<f(-2)D.f()<f(-2)<f(-3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设函数的导函数为,且
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,定义运算“”、“”为:
给出下列各式
,②
,  ④.
其中等式恒成立的是              .(将所有恒成立的等式的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知函数处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式对任意 及
恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
已知函数.
(1)判断并证明函数的单调性;
(2)若函数为奇函数,求的值;
(3)在(2)的条件下,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)定义在上的奇函数,满足 ,又当时,是减函数,求的取值范围。

查看答案和解析>>

同步练习册答案