精英家教网 > 高中数学 > 题目详情

(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)
(Ⅰ)将日利润(元)表示成日产量(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

解:(I).………………4分
=3600
∴所求的函数关系是y=-+36001≤x≤40).………………6分
(II)显然令y′=0,解得x=30.

∴函数y=-+3600x(x∈N*,1≤x≤40)在上是单调递增函数,
上是单调递减函数.                 …………………………10分
∴当x=30时,函数y=-+3600x(x∈N*,1≤x≤40)取最大值,最大值为
×303+3600×30=72000(元).
∴该厂的日产量为30件时,日利润最大,其最大值为72000元.…………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数f(x)的最大值和最小值;
(2)求实数的取值范围,使在区间上是单调函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数,),
(1)若,且函数的值域为,求的表达式;
(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;
(3)设,且函数为偶函数,判断是否大于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数的图像经过坐标原点,且满足,设函数,其中m为常数且
(1)求函数的解析式;
(2)判断函数的单调性并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题11分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,求出S与t之间的函数关系式和相应的自变量t的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)二次函数f(x)满足且f(0)=1.
(1)求f(x)的解析式;
(2)在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象与x轴有两个不同的公共点,且,当时,恒有.
(1)当时,求不等式的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且,求a的值;
(3)若,且对所有恒成立,求正实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

由直线与曲线所围成的封闭图形的面积为(   )

A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在区间上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上单调,求的取值范围。

查看答案和解析>>

同步练习册答案