精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求函数f(x)的最大值和最小值;
(2)求实数的取值范围,使在区间上是单调函数

解:       …………2分

;                     ………6分
(2)对称轴                               ………7分
,即时,上单调递减,  ……9分
,即时,上单调递增,  ………11分
综上,的取值范围为.           ……12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的图象与函数的图象交于两点在线段 上,为坐标原点),过轴的垂线,垂足分别为,并且分别交函数的图象于两点.
(1)试探究线段的大小关系;
(2)若平行于轴,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简下列各式:
(1)
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
⑴若,解方程;
⑵若函数在[1,2]上有零点,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(每小题5分,共10分)计算下列各式的值:
(1) ;   (2)  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 对于函数fx),若存在x0∈R,使fx0)=x0成立, 则称x0fx)的不动点.  已知函数fx)=ax2+(b+1)x+b-1(a≠0)
(1)当a=1,b=-2时,求fx)的不动点;
(2)若对于任意实数b,函数fx)恒有两个相异的不动点,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(本小题满分14分)一块边长为10的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积的函数关系式,并求出函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某创业投资公司拟投资开发某种新能源产品,估计能获得x∈[10,1000]万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型
的基本要求;
(Ⅱ)现有两个奖励函数模型:(i) y=;(ii) y=4lgx-3.试分析这两个函数模型
是否符合公司要求?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)
(Ⅰ)将日利润(元)表示成日产量(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

查看答案和解析>>

同步练习册答案