精英家教网 > 高中数学 > 题目详情

(本小题满分12分)二次函数f(x)满足且f(0)=1.
(1)求f(x)的解析式;
(2)在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

解: (1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.
∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,所以,∴f(x)=x2-x+1.
(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.
设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.
故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.        

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 对于函数fx),若存在x0∈R,使fx0)=x0成立, 则称x0fx)的不动点.  已知函数fx)=ax2+(b+1)x+b-1(a≠0)
(1)当a=1,b=-2时,求fx)的不动点;
(2)若对于任意实数b,函数fx)恒有两个相异的不动点,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=2x.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)
(Ⅰ)将日利润(元)表示成日产量(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设是定义在R上的偶函数,其图象关于对称,对任意的,都有,且
(1)求
(2)证明:是周期函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
解方程:(1)   (2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在上的单调递减函数,若的导函数存在且满足,则下列不等式成立的是(   )

A.B.
C.D.

查看答案和解析>>

同步练习册答案