精英家教网 > 高中数学 > 题目详情

(10分)设是定义在R上的偶函数,其图象关于对称,对任意的,都有,且
(1)求
(2)证明:是周期函数。

解:(1)因为对任意的,都有
所以
又因为
所以
(2)因为是定义在R上的偶函数,其图象关于对称
所以

所以是周期为2的周期函数。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若定义在上的函数满足条件:存在实数,使得:
⑴ 任取,有是常数);
⑵ 对于内任意,当,总有
我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。
(2) 已知是“平顶型”函数,求出 的值。
(3)对于(2)中的函数,若上有两个不相等的根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数的图像经过坐标原点,且满足,设函数,其中m为常数且
(1)求函数的解析式;
(2)判断函数的单调性并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)二次函数f(x)满足且f(0)=1.
(1)求f(x)的解析式;
(2)在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象与x轴有两个不同的公共点,且,当时,恒有.
(1)当时,求不等式的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且,求a的值;
(3)若,且对所有恒成立,求正实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数的图象在处的切线与圆相切,则的最大值是(  )

A.4 B. C.2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在区间上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上单调,求的取值范围。

查看答案和解析>>

同步练习册答案