精英家教网 > 高中数学 > 题目详情
7.过抛物线:y2=2px(p>0)的焦点F作倾斜角为60°的直线l,若直线l与抛物线在第一象限的交点为A,并且点A也在双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线的离心率为(  )
A.$\frac{\sqrt{21}}{3}$B.$\sqrt{13}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{5}$

分析 由题意画出图形,把A的坐标用p表示,代入双曲线的渐近线方程得到a,b的关系,结合a2+b2=c2求得双曲线的离心率.

解答 解:如图,

设A(x0,y0),则|AF|=2(${x}_{0}-\frac{p}{2}$),
又|AF|=${x}_{0}+\frac{p}{2}$,∴$2({x}_{0}-\frac{p}{2})={x}_{0}+\frac{p}{2}$,解得${x}_{0}=\frac{3}{2}p$,
${y}_{0}=\frac{\sqrt{3}}{2}|AF|=\frac{\sqrt{3}}{2}2P=\sqrt{3}P$,
∵A($\frac{3}{2}p,\sqrt{3}p$)在双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,
∴$\sqrt{3}p=\frac{b}{a}•\frac{3}{2}p$,解得:${b}^{2}=\frac{4}{3}{a}^{2}$,
由a2+b2=c2,得${a}^{2}+\frac{4}{3}{a}^{2}={c}^{2}$,即$\frac{{c}^{2}}{{a}^{2}}=\frac{7}{3}$,∴$\frac{c}{a}=\frac{\sqrt{21}}{3}$.
故选:A.

点评 本题考查了抛物线与双曲线的几何性质,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow m$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow n$=(sinα,1),$\overrightarrow m$与$\overrightarrow n$为共线向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;        
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)试说明函数g(x)=$\frac{x}{{x}^{2}+1}$的单调性(不要求证明);
(2)设f(x)=tx-(1+t2)x2,其中t>0,区间I={x|f(x)>0},求区间I长度l(t)(注:区间(α,β)的长度定义为β-α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知θ是锐角,当$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$取得最小值时,sinθ=(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为6的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{15}$C.$\frac{2}{15}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.小李同学今年寒假共抢得了九个红包,其中每个红包里有且仅有一个数字(单位为元),他将这九个数字组成如图$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所示的数阵,发现每行的三个数依次成等差数列,每列的三个数也依次成等差数列.若a22=26,则小李同学一共抢了234元的红包.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数a,b,c满足a+2b+3c=2,则当a2+2b2+3c2取最小值时,2a+4b+9c的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的顶点,P为双曲线上除顶点外的一点,记kPA,kPB分别表示直线PA,PB的斜率,若kPA•kPB=$\frac{5}{4}$,则该双曲线的离心率为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义行列式运算 $|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{a4}\end{array}|$=a1a4-a2a3.将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinx}\\{1}&{cosx}\end{array}|$的图象向左平移n(n>0)个单位,所得图象对应的函数为偶函数,则n的最小值为 (  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案