| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
分析 原式变形后,利用多项式乘以多项式法则计算,利用基本不等式求出取得最小值时sinθ的值即可.
解答 解:$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$=($\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$)(sin2θ+cos2θ)=5+$\frac{co{s}^{2}θ}{si{n}^{2}θ}$+$\frac{4si{n}^{2}θ}{co{s}^{2}θ}$≥5+2$\sqrt{4}$=9,
当且仅当$\frac{co{s}^{2}θ}{si{n}^{2}θ}$=4×$\frac{si{n}^{2}θ}{co{s}^{2}θ}$,即cos4θ=4sin4θ时,取等号,
∵θ为锐角,∴sinθ>0,cosθ>0,
此时sin2θ=$\frac{1}{3}$,即sinθ=$\frac{\sqrt{3}}{3}$.
故选:A.
点评 此题考查了同角三角函数基本关系的运用,以及基本不等式的应用,熟练掌握基本不等式是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{21}}{3}$ | B. | $\sqrt{13}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com