分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域如图:
则x≥0,y≤3,
则z=|x|+|y-3|=x-y+3,
即y=x+3-z,
平移直线y=x+3-z,
由图象知当直线经过点B(4,0)时,直线截距最小,此时z最大,最大为z=4+3=7,
当直线经过点C时,直线截距最大,此时z最小,
由$\left\{\begin{array}{l}{x+y-4=0}\\{2x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,
即C(1,3),最小值为z=1-3+3=1,
即1≤z≤7,
故答案为:[1,7].
点评 本题主要考查线性规划的应用,根据平面区域确定x,y的取值范围,去掉绝对值是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{11}{3}$ | B. | -17 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com