精英家教网 > 高中数学 > 题目详情
14.已知tanα=-$\frac{1}{3}$,求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)2sin2α-$\frac{3}{2}$sinαcosα+5cos2α;
(3)$\frac{1}{1-sinαcosα}$.

分析 (1)分子分母同除以cosα,由同角三角函数关系式即可得解.
(2)由倍角公式和万能公式化简后结合已知即可得解.
(3)由倍角公式和万能公式化简后结合已知即可得解.

解答 解:∵tanα=-$\frac{1}{3}$,
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×(-\frac{1}{3})-2}{5+3×(-\frac{1}{3})}$=-$\frac{5}{6}$;
(2)∵sin2α=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{3}{5}$,cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{4}{5}$
∴2sin2α-$\frac{3}{2}$sinαcosα+5cos2α=1-cos2α-$\frac{3}{4}$sin2α+$\frac{5}{2}$(1+cos2α)=$\frac{7}{2}$-$\frac{3}{4}$sin2α+$\frac{3}{2}$cos2α=$\frac{7}{2}$-$\frac{3}{4}$×(-$\frac{3}{5}$)+$\frac{3}{2}$×$\frac{4}{5}$=$\frac{103}{20}$;
(3)$\frac{1}{1-sinαcosα}$=$\frac{1}{1-\frac{1}{2}sin2α}$=$\frac{1}{1-\frac{1}{2}×\frac{2tanα}{1+ta{n}^{2}α}}$=$\frac{10}{13}$.

点评 本题主要考查了倍角公式,万能公式,同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知点P(-1,m),A(1,0)且$\overrightarrow{PQ}$=2$\overrightarrow{QA}$,若点Q在抛物线y2=4x上,则m=(  )
A.±2B.±$\sqrt{3}$C.±$\frac{2\sqrt{3}}{3}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z满足z•i=3-i,则在复平面内,复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.求函数f(x)=2sin(x+$\frac{π}{4}$),给出下列四个命题:
①存在α∈(-$\frac{π}{2}$,0)使f(α)=$\sqrt{2}$;
②存在α∈(0,$\frac{π}{2}$),使f(x-α)=f(x+α)恒成立;
③存在α∈R,使函数f(x+α)的图象关于坐标原点成中心对称;
④函数f(x)的图象关于直线x=-$\frac{3π}{4}$对称;
⑤函数f(x)的图象向左平移$\frac{π}{4}$个单位就能得到y=-2cosx的图象.
其中正确的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=$\frac{1}{2}$,Sn=n2an(n∈N*
(1)求a2、a3、a4的值;
(2)推出数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设m∈R,过定点A的动直线mx+y-1=0与过定点B的动直线x-my+m+2=0交于点P(x,y),则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的
最大值为(  )
A.2B.$\sqrt{2}$+1C.2$\sqrt{2}$D.$\sqrt{2}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,角α以x轴非负半轴为始边,其终边与单位圆交于点P,过点P作x轴的垂线与射线y=$\sqrt{3}$x(x≥0)交于点Q,其中α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:选择题

在区间上,若函数为增函数,而函数为减函数,则称函数为区间上的“弱增”函数.则下列函数中,在区间上不是“弱增”函数的为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C过点O(0,0),A(2,4),且圆心在直线x-2y+3=0上
(1)求圆C的方程;
(2)若直线2x+y-m=0与圆c交于M,N两点,且∠MON=60°,求m的值;
(3)是否存在同时满足下列两个条件的直线l:①斜率为-1 ②直线l与圆C相交于E,F两点,且$\overrightarrow{OE}$•$\overrightarrow{OF}$=4?若存在这样的直线,请求出其方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案