精英家教网 > 高中数学 > 题目详情
1.已知直线l经过点(3,5),斜率不存在,求l的方程,并在同一坐标系中画出各条直线.

分析 直线的斜率不存在,则直线和x轴垂直,求出即可.

解答 解:经过点(3,5),斜率不存在的方程为:
x=3,如图示.

点评 本题考查了求直线方程问题,考查函数图象,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)在第一象限的一个公共点为P,过P作与x轴平行的直线分别交两圆于不同两点A,B(异于P点),且OA⊥OB,则直线OP的斜率是$\sqrt{3}$,r=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校采用系统抽样方法,从该校髙一年级全体800名学生中抽50名学生做视力检査.现将800名学生从1到800进行编号.已知从33〜48这16个数中抽到的数是39,则在第1小组 1〜16中随机抽到的数是(  )
A.5B.7C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.A,B,C三个集合,若A?B∪C,则有(  )成立.
A.若x$\overline{∈}$B∪C,则x$\overline{∈}$AB.若x∈A,则x∈B∩CC.若x∈A,则x∈CD.若x∈A,则x∈B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(n)=sin$\frac{nπ}{4}$,n∈Z,则f(1)+f(2)+f(3)+…+f(2015)=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x,3),当x为何值时:
(1)$\overrightarrow{a}$∥$\overrightarrow{b}$;
(2)$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(3)向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量.
(1)若|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=3,试求|3$\overrightarrow{a}+\overrightarrow{b}$|的值;
(2)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,试求向量$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{n}$=2$\overrightarrow{b}$-$\overrightarrow{a}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.满足$\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}$的角x的集合是{x|x=2kπ-$\frac{π}{6}$,或x=2kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数F(x)=${∫}_{0}^{x}$(t2+2t-8)dt(x>0)的递增区间为(  )
A.(2,+∞)B.(0,2)C.(-4,+∞)D.(-∞,-4)

查看答案和解析>>

同步练习册答案