分析 由题意利用两角和差的正弦公式求得sin(x+$\frac{π}{3}$)=$\frac{1}{2}$,故有x+$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或x+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z,由此求得x值得集合.
解答 解:根据$\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}$=sin(x+$\frac{π}{3}$),可得x+$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或x+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z,
求得x=2kπ-$\frac{π}{6}$,或x=2kπ+$\frac{π}{2}$,
故角x的集合为{x|x=2kπ-$\frac{π}{6}$,或x=2kπ+$\frac{π}{2}$,k∈Z},
故答案为:{x|x=2kπ-$\frac{π}{6}$,或x=2kπ+$\frac{π}{2}$,k∈Z}.
点评 本题主要考查两角和差的正弦公式,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [9,+∞) | B. | [-$\frac{1}{3}$,+∞) | C. | [-$\frac{5}{3}$,+∞) | D. | [-$\frac{1}{3}$,9] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,4) | B. | (2,4) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com