精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.
(1)当a=﹣1时,解不等式f(x)≤1;
(2)若当x∈[0,3]时,f(x)≤4,求a的取值范围.

【答案】
(1)解:当a=﹣1时,不等式为|x+1|﹣|x+3|≤1.

当x≤﹣3时,不等式化为﹣(x+1)+(x+3)≤1,不等式不成立;

当﹣3<x<﹣1时,不等式化为﹣(x+1)﹣(x+3)≤1,解得﹣ ≤x<﹣1;

当x≥﹣1时,不等式化为(x+1)﹣(x+3)≤1,不等式必成立.

综上,不等式的解集为[﹣ ,+∞).


(2)解:当x∈[0,3]时,f(x)≤4即|x﹣a|≤x+7,

由此得a≥﹣7且a≤2x+7.

当x∈[0,3]时,2x+7的最小值为7,

所以a的取值范围是[﹣7,7].


【解析】(1)当a=﹣1时,不等式为|x+1|﹣|x+3|≤1,对x的取值范围分类讨论,去掉上式中的绝对值符号,解相应的不等式,最后取其并集即可;(2)依题意知,|x﹣a|≤x+7,由此得a≥﹣7且a≤2x+7,当x∈[0,3]时,易求2x+7的最小值,从而可得a的取值范围.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(﹣t)+4034t+2017,则实数t的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若直线l过点(-2,0)且被圆C截得的弦长为2,求直线l的方程;

(2)从圆C外一点P向圆C引一条切线,切点为MO为坐标原点,且|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.

(1)求包装盒的容积关于的函数表达式,并求函数的定义域;

(2)为多少时,包装盒的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,且离心率为

(I)求椭圆的方程;

(II)若一组斜率为的平行线,当它们与椭圆相交时,证明:这组平行线被椭圆截得的线段的中点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若 是第一象限角且 ,则

②函数上是减函数;

是函数 的一条对称轴;

④函数 的图象关于点 成中心对称;

⑤设 ,则函数 的最小值是,其中正确命题的序号为 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC,满足bcosC+ bsinC﹣a﹣c=0
(1)求角B的值;
(2)若a=2,且AC边上的中线BD长为 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30

(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;

(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

同步练习册答案