8£®ÖÐɽijÂÃÓι«Ë¾×éÖ¯ÑÇÔËÏß·һÌìÓΣ¬¾°µã°üÀ¨£º¹ã¶«Ê¡²©Îï¹Ýйݡ¢¹ãÖݸè¾çÔº¡¢ÑÇÔ˻Ὺ±ÕĻʽ³¡µØº£ÐÄɳ¡¢¹ãÖÝеçÊÓËþ¡¢¹ãÖÝ´óѧ³ÇÌåÓýÖÐÐÄÌåÓý³¡¡¢¹ãÖÝÐÂÖÐÖáÏß»¨³Ç¹ã³¡£®°²ÅÅÏß·ʱ£¬ÒªÇóÉÏÎçÓÎÀÀ4¸ö¾°µã£¬ÏÂÎçÓÎÀÀ2¸ö¾°µã£¬¹ãÖÝ´óѧ³ÇÌåÓýÖÐÐÄÌåÓý³¡ÅÅÔÚµÚÒ»¸ö¾°µã£¬¹ã¶«Ê¡²©Îï¹Ýйݡ¢¹ãÖݸè¾çÔº°²ÅÅÔÚÉÏÎ磬¹ãÖÝÐÂÖÐÖáÏß»¨³Ç¹ã³¡°²ÅÅÔÚÏÂÎ磮Ôò´ËÏß·¹²ÓÐ864ÖÖÅÅ·¨£¨ÓÃÊý×Ö×÷´ð£©£®

·ÖÎö µÚÒ»²½£¬°²ÅÅÉÏÎçµÄ¾°µã£¬µÚ¶þ²½£¬°²ÅÅÏÂÎçµÄ¾°µã£¬¸ù¾Ý·Ö²½¼ÆÊýÔ­Àí¿ÉµÃ£®

½â´ð ½â£ºµÚÒ»²½£¬´ÓÑÇÔ˻Ὺ±ÕĻʽ³¡µØº£ÐÄɳ¡¢¹ãÖÝеçÊÓËþ¡¢¹ãÖÝ´óѧ³ÇÌåÓýÖÐÐÄÌåÓý³¡4¸ö¾°µãÑ¡2¸öºÍ¹ã¶«Ê¡²©Îï¹Ýйݡ¢¹ãÖݸè¾çԺȫÅÅ£¬¹ÊÓÐC42A44=144ÖÖ£¬
µÚ¶þ²½£¬Ê£ÏµÄ3¸ö¾°µãÈ«ÅÅÓÐA33=6ÖÖ£¬
¸ù¾Ý·Ö²½¼ÆÊýÔ­Àí¿ÉµÃ144¡Á6=864ÖÖ£¬
¹Ê´ð°¸Îª£º864£®

µãÆÀ ±¾Ì⿼²éÁË·Ö²½¼ÆÊýÔ­Àí£¬¹Ø¼üÊÇ·Ö²½£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³µØÇøÖ²±»±»ÆÆ»µºó£¬ÍÁµØÉ³Ä®»¯Ô½À´Ô½ÑÏÖØ£¬¾Ý²â£¬×î½üÈýÄê¸ÃµØÇøµÄɳĮÔö¼ÓÃæ»ý·Ö±ðΪ0.2Íò¹«Ç꣬0.4Íò¹«ÇêºÍ0.76Íò¹«Ç꣬ÈôɳĮÔö¼ÓÃæ»ýyÍò¹«ÇêÊǹØÓÚÄêÊýxµÄº¯Êý¹ØÏµ£¬Ôò´Ë¹ØÏµÓÃÏÂÁÐÄĸöº¯ÊýÄ£Äâ±È½ÏºÃ£¨¡¡¡¡£©
A£®y=$\frac{x}{5}$B£®y=$\frac{1}{10}$£¨x2+2x£©C£®y=$\frac{1}{10}$•2xD£®y=0.2+log16x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}£¨{2-a}£©x-\frac{a}{2}£¬£¨{x£¼1}£©\\{log_a}x£¬£¨{x¡Ý1}£©\end{array}\right.$ÊÇRÉϵÄÔöº¯Êý£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇ[$\frac{4}{3}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÉèÇúÏß$y=\frac{2}{x-1}$Ôڵ㣨3£¬1£©´¦µÄÇÐÏßÓëÖ±Ïßax-y+1=0´¹Ö±£¬Ôòa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÕýÏîÊýÁÐ{an}µÄǰnÏîºÍΪsn£¬ÇÒ$2\sqrt{s_n}={a_n}+1$£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éè${b_n}={a_n}•{2^{{a_n}+1}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¶¨Ò庯Êýfk£¨x£©=$\frac{alnx}{{x}^{k}}$Ϊf£¨x£©µÄk½×º¯Êý£®
£¨1£©Çóf£¨x£©µÄÒ»½×º¯Êýf1£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÌÖÂÛ·½³Ìf2£¨x£©=1µÄ½âµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÔÖ±½Ç×ø±êϵxOyµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇÒÁ½×ø±êϵȡÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªµãNµÄ¼«×ø±êΪ£¨2£¬$\frac{¦Ð}{2}$£©£¬MÊÇÇúÏßC£ºp2•£¨cos2¦È-sin2¦È£©+1=0ÉÏÈÎÒâÒ»µã£¬µãPÂú×ã$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$£¬ÉèµãPµÄ¹ì¼£ÎªÇúÏßQ£®
£¨1£©ÇóÇúÏßQµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±Ïßl£º$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßQµÄ½»µãΪA¡¢B£¬Çó|AB|µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÊýÁÐ{an}ÖУ¬a1=1£¬¶ÔÈÎÒân¡ÊN*£¬ÓÐan+1=$\frac{{a}_{n}}{1+{a}_{n}}$£®
£¨1£©Çóa4£»
£¨2£©Çó¸ÃÊýÁеÄͨÏʽan£»
£¨3£©Èôbn=an•an+1£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒan+1=5Sn-3£¬a1=1£¬Ôò{an}µÄͨÏʽan=$\left\{\begin{array}{l}{1£¬}&{n=1}\\{2•{6}^{n-2}£¬}&{n¡Ý2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸