精英家教网 > 高中数学 > 题目详情
已知函数y=x2-bx+2(x∈(-∞,1))是单调函数,则b的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:二次函数图象是抛物线,开口向上,对称轴是x=
b
2
,又y=x2-bx+2(x∈(-∞,1))是单调函数,进而构造关于b的不等式,解不等式可得b的取值范围.
解答: 解:∵函数y=x2-bx+2的对称轴是x=
b
2

又∵函数y=x2-bx+2,(x∈(-∞,1))是单调函数,
又∵函数图象开口向上,
∴函数y=x2-bx+2(x∈(-∞,1))是单调减函数,
∴1≤
b
2

∴b≥2,
∴b的取值范围是[2,+∞).
故答案为:[2,+∞).
点评:本题考查二次函数的图象特征、二次函数的单调性及单调区间,体现数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(0,4),离心率为
3
5

(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被椭圆所截得线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y+1≥0
x+y-2≥0
x≤2
,则目标函数z=x-3y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于6的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1:x+ay-1=0与l2:4x-2y+3=0垂直,则二项式(ax2-
1
x
)2
展开式中的x的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,
(1)y=f(x-2)与y-f(2-x)的图象关于直线 x=2对称;
(2)有下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②f(2x+5)=f(2x)则5是y=f(x)的周期;
③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;
④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.
其中正确的命题为_
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入如下四个函数:
①f(x)=sinx,②f(x)=cosx,③f(x)=
1
x
,④f(x)=x2
则输出的函数是(  )
A、f(x)=sinx
B、f(x)=cosx
C、f(x)=
1
x
D、f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
m+1
+y2=1
的两个焦点是F1(-c,0),F2(c,0)(c>0).
(Ⅰ)若直线y=x+2与椭圆C有公共点,求m的取值范围;
(Ⅱ)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(Ⅲ)已知斜率为k(k≠0)的直线l与(Ⅱ)中椭圆交于不同的两点A,B,点Q满足
AQ
=
QB
NQ
AB
=0
,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

同步练习册答案