精英家教网 > 高中数学 > 题目详情
13.如图,在正三棱柱ABC-A1B1C1中,AB=BB1=4.
(1)求直线AB1与A1C1所成角;
(2)求点B到平面AB1C的距离.

分析 (1)确定∠CAB1(或其补集)等于直线AB1与A1C1所成角,再求直线AB1与A1C1所成角;
(2)利用等体积,求点B到平面AB1C的距离.

解答 解:(1)∵A1C1∥AC,
∴∠CAB1(或其补集)等于直线AB1与A1C1所成角,
∵$A{B_1}=C{B_1}=4\sqrt{2},AC=4$,
∴$cos∠CA{B_1}=\frac{{\sqrt{2}}}{4}$,
∴直线AB1与A1C1所成角为$arccos\frac{{\sqrt{2}}}{4}$.
(2)设点B到平面AB1C的距离为h,
由${V_{B-A{B_1}C}}={V_{{B_1}-ABC}}$,可得$\frac{1}{3}×\frac{1}{2}×4×\sqrt{32-4}$h=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{4}^{2}×4$,
∴h=$\frac{{4\sqrt{21}}}{7}$.
∴点B到平面AB1C的距离为$\frac{{4\sqrt{21}}}{7}$.

点评 本题考查异面直线所成角,考查点面距离的计算,考查等体积的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,PA⊥平面ABCD,PA=2AB=2,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,在平面PCD内作EF⊥PC于点F.
(1)求证:F为PC的中点;
(2)求点F到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.ABCDEF是边长为4的正六边形,PA⊥面ABCDEF,PA=2,则P到BC的距离为4,P到CD的距离为2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线x+y=1与圆(x-a)2+(y-b)2=2(a>0,b>0)相切,则ab的取值范围是(  )
A.(0,$\frac{3}{2}$]B.(0,$\frac{9}{4}$]C.(0,3]D.(0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断条件“p:A?B”是结论“q:A∪B=B”的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点Q在圆x2+y2=1上,过点Q作x轴的垂线段MQ,垂足为M,动点P满足:$\overrightarrow{MP}=\sqrt{2}\overrightarrow{MQ}$.当点Q在圆上运动时,记动点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程和焦点坐标;
(Ⅱ)过原点的直线与曲线Γ相交于A、B两点,过点A作y轴的垂线,垂足为C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果函数f(x)=lg[x(x-$\frac{3}{2}$)+1],x∈[1,$\frac{3}{2}$],那么f(x)的最大值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a=sinxcosx,b=sinx+cosx.
(1)求a,b的关系式;
(2)若x∈(0,$\frac{π}{2}$),求y=sinxcosx+sinx+cosx的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a、b、c、d是4个整致,且使得m=(ab+cd)2-$\frac{1}{4}$(a2+b2-c2-d22是个非零整数,求证:|m|一定是个合数.

查看答案和解析>>

同步练习册答案