精英家教网 > 高中数学 > 题目详情
4.ABCDEF是边长为4的正六边形,PA⊥面ABCDEF,PA=2,则P到BC的距离为4,P到CD的距离为2$\sqrt{13}$.

分析 求出A到BC的距离,可得P到BC的距离;由已知中P是边长为a的正六边形ABCDEF所成平面外一点,PA⊥AB,PA⊥AF,PA=a.我们易得PA⊥平面ABCDEF,解直角三角形PAC,PAD后,可由勾股定理判断出PC⊥CD,即可得到答案.

解答 解:由题意,A到BC的距离为2$\sqrt{3}$,PA=2,∴P到BC的距离为$\sqrt{12+4}$=4.
连接AC,AD,PD,如下图所示:

∵正六边形ABCDEF的边长为4,则AC=4$\sqrt{3}$,AD=8,CD=4
又∵PA⊥AB,PA⊥AF,
∴PA⊥平面ABCDEF,
∴PA⊥AC,PA⊥AD
∵PA=2,∴PC=2$\sqrt{13}$,PD=2$\sqrt{17}$,
在△PCD中,∵PC2+CD2=PD2
故PC⊥CD
故PC长即为P点到CD的距离=2$\sqrt{13}$
故答案为:4,2$\sqrt{13}$.

点评 本题考查的知识点是空间点到线之间的距离,其中证明PC⊥CD,进而将点到直线的距离,转化为求线段长问题,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.不论a取何值,函数y=loga(x+3)-1恒过定点A.
(1)求点A的坐标;
(2)若点A在直线mx+ny+1=0上,其中m>0,n>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,直线ρsin(θ+$\frac{π}{4}$)=2被曲线ρ=4截得的弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知下列点的直角坐标,求它们的极坐标:
(1)D(0,-2);(2)E(-3,-3);(3)E(-5,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,证明:f(b)≥f(a),并说明等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.长方体ABCD-A1B1C1D1中,AB=2AD=2AA1=2,P为A1B1中点.
(Ⅰ)求证:CP⊥平面AD1P;
(Ⅱ)求点P到平面ACD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断正方体中平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若P是 CG的中点,求正方体中DP与HF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正三棱柱ABC-A1B1C1中,AB=BB1=4.
(1)求直线AB1与A1C1所成角;
(2)求点B到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点P是二面角α-AB-β两个半平面外一点,且满足PC⊥α,PD⊥β,C、D是垂足.
(Ⅰ)试判断直线AB线与直线CD的位置关系.并证明你的结论;
(Ⅱ)若二面角α-AB-β的大小为θ(0<θ<π),求∠CPD的大小.

查看答案和解析>>

同步练习册答案